Estimated Levels of Environmental Contamination and Health Risk Assessment for Herbicides and Insecticides in Surface Water of Ceará, Brazil

  • Anayla S. Sousa
  • Wersângela C. Duaví
  • Rivelino M. Cavalcante
  • Maria Aparecida L. Milhome
  • Ronaldo F. do Nascimento
Article

Abstract

Methodology using solid phase extraction and high performance liquid chromatography (SPE-C18/HPLC–DAD) was applied to pesticide determinations in ten water reservoirs in the semidarid region of northeastern Brazil. The validated method was suitable for determination of herbicides and insecticide in surface water. The recovery efficiency of atrazine, methyl-parathion and simazine was approximately 70 %. The method also showed good linearity and selectivity with correlation coefficients (R) greater than 0.99. The limits of detection were below the maximum residue limits (MRLs) established by government agencies. Studied reservoirs showed presence of atrazine at mean levels from 7.0 to 15.0 µg/L. Simazine and methyl parathion were not detected during the period. The atrazine levels measured from this semiarid region are of the same magnitude as those found in regions with moderate to high agricultural activity. According to detected atrazine concentrations, the annual health risk to humans was insignificant. However, the control of herbicides is important to maintain the quality of water in the reservoirs of Ceará, Brazil.

Keywords

Pesticides Contamination Health risk Water resources Solid phase extraction 

References

  1. ABNT-Associação Brasileira de Normas Técnicas (2005) Agrotóxicos e Afins -Validação de métodos analíticos, NBR14029Google Scholar
  2. Albaseer SS, Rao RN, Swamy YV, Mukkanti K (2010) An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. J Chromatogr A 1217(35):5537–5554CrossRefGoogle Scholar
  3. APHA, Awwa, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Administration, American Water Works Association, Water Environment Federation, Washington, DCGoogle Scholar
  4. Armas ED, Monteiro RTR, Antunes PM, Santos M, Camargo PB, Abakerli RB (2007) Spatial-temporal diagnostic of herbicide occurrence in surface waters and sediments of Corumbataí River and main affluents. Quim Nova 30(5):1119–1127CrossRefGoogle Scholar
  5. Arraes AA, Barreto FMS, Araújo JC (2008) XIII World Water Congress, Montpellier. Proceedings. International Water Resources Association, JohanesburgGoogle Scholar
  6. Barlas NE (2002) Determination of organochlorine pesticide residues in water and sediment samples in Inner Anatolia in Turkey. Bull Environ Contam Toxicol 69(2):236–242CrossRefGoogle Scholar
  7. Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Maroneze AM, Kurz MHS, Bacar NM, Zanella R (2007) Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim Nova 30(8):1872–1876CrossRefGoogle Scholar
  8. Cavalcante RM, Viana RB, Oliveira I, Nascimento RF, Silveira ER, Freire GSS (2007) Utilization of solid-phase extraction (SPE) for the determination of polycyclic aromatic hydrocarbons in environmental aqueous matrices. Quim Nova 30(3):560–564CrossRefGoogle Scholar
  9. Cavalcante RM, Lima DM, Fernandes GM, Duaví WC (2012) Relation factor: a new strategy for quality control in the determination of pesticides in environmental aqueous matrices. Talanta 93:212–218. doi:10.1016/j.talanta.2012.02.015 CrossRefGoogle Scholar
  10. Cerejeira M, Viana P, Batista S, Pereira T, Silva E, Valério M, Silva A, Ferreira M, Silva-Fernandes A (2003) Pesticides in portuguese surface and ground waters. Water Res 37(5):1055–1063CrossRefGoogle Scholar
  11. CITAC/EURACHEM (2002) Guide to quality in analytical chemistry. URL: http://www.citac.cc/CITAC_EURACHEM_GUIDE.pdf
  12. Claver A, Ormad P, Rodríguez L, Ovelleiro JL (2006) Study of the presence of pesticides in surface waters in the Ebro River basin (Spain). Chemosphere 64(9):1437–1443CrossRefGoogle Scholar
  13. Diana SG, Resetarites WJ Jr, Schaeffer DJ, Beckmen KB, Beasley BR (2000) Effects of atrazine on amphibian growth and survival in artificial aquatic communities. Environ Toxicol Chem 19(12):2961–2967CrossRefGoogle Scholar
  14. dos Santos Neto AJ, Siqueira MEPB (2005) Analysis of organophosphorus pesticides in water using SPE C18 disks and gas chromatography: evaluation of Furnas dam contamination. Quím. Nova 28(5):747–750CrossRefGoogle Scholar
  15. Environmental Protection Agency (EPA) (1992) Guidelines for exposure assessment FRL-4129-5. URL: http://www.epa.gov/ncea/pdfs/partmatt/April1996/guidline.pdf. Accessed on 20 Mar 2015
  16. Environmental Protection Agency (EPA) (2014) Integrated risk information system (IRIS). URL: http://www.epa.gov/iris/iris-nrc.htm
  17. European Community (EC) (1998) Council Directive 98/83/EC. URL http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF
  18. Gama AF, Oliveira AHB, Cavalcante RM (2013) Inventário de agrotóxicos e risco de contaminação química dos recursos hídricos no semiárido cearense. Quim Nova 36(3):462–467CrossRefGoogle Scholar
  19. Garmouma M, Teil MJ, Blanchard M, Chevreuil M (1998) Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne River (France). Sci Total Environ 224(1–3):93–107CrossRefGoogle Scholar
  20. Jeanneau L, Faure P, Jardé E (2007) Influence of natural organic matter on the solid-phase extraction of organic micropollutants: application to the water-extract from highly contaminated river sediment. J Chromatogr A 1173(1–2):1–9CrossRefGoogle Scholar
  21. MAPA- Ministério da Agricultura, Pecuária e Abastecimento (2015) Agrofit. URL: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 05 Aug 2014
  22. Milhome MAL, Sousa DOB, Lima FAF, Nascimento RF (2009) Assessment of surface and groundwater potential contamination by agricultural pesticides applied in the region of Baixo Jaguaribe, CE, Brazil. Eng Sanit Ambient 14(3):363–372CrossRefGoogle Scholar
  23. Milhome MAL, Sousa PLR, Keukeleire D, Nascimento RF (2011) Multiresidue methods for determination of pesticides using SPME and SPE followed by GC-NPD System: a comparative study. J Braz Chem Soc 22(11):2048–2055CrossRefGoogle Scholar
  24. Milhome MAL, Sousa PLR, Lima FAF, Nascimento RF (2015) Assessment of pesticides contamination in water resources of the irrigated areas of Jaguaribe, Ceará, Brazil. Int J Environ Res 9(1):255–262Google Scholar
  25. Ministry of Health of Brazil (2011) Portaria MS No 2914 DE 12/12/2011Google Scholar
  26. Ni F, Liu G, Ren H, Yang S, Ye J, Lu X, Yang M (2009) Health risk assessment on rural drinking water safety—a case study in rain city district of Ya’an city of Sichuan Province. J Water Resource and Protection 1(2):128–135CrossRefGoogle Scholar
  27. Nogueira EM, Dores EFGC, Pinto AA, Amorim RSS, Ribeiro ML, Lourencetti C (2012) Currently used pesticides in water matrices in Central-Western Brazil. J Braz Chem Soc 23(8):1476–1487CrossRefGoogle Scholar
  28. Ribeiro ACA, Dores EFGC, Amorim RSS, Lourencetti C (2013) Resíduos de pesticidas em águas superficiais de área de nascente do Rio São Lourenço-MT: validação de método por extração em fase sólida e cromatografia líquida. Quim Nova 36(2):284–290CrossRefGoogle Scholar
  29. Rigotto RM (2009) Exploring fragility: industrial delocalization, occupational and environmental risks, and non-governmental organizations. Int J Environ Res Public Health 6(3):980–998CrossRefGoogle Scholar
  30. Sabin GP, Prestes OD, Adaime MB, Zanella R (2009) Multiresidue determination of pesticides in drinking water by gas chromatography-mass spectrometry after solid-phase extraction. J Braz Chem Soc 20(5):918–925CrossRefGoogle Scholar
  31. Singh B, Gupta A (2002) Monitoring of pesticide residues in different sources of drinking water of Jaipur, India. Bull Environ Contam Toxicol 69(1):49–53CrossRefGoogle Scholar
  32. Soares WL, Porto MF (2007) Atividade agrícola e externalidade ambiental: uma análise a partir do uso de agrotóxicos no cerrado brasileiro. Ciência Saúde Coletiva 12(1):131–143CrossRefGoogle Scholar
  33. Solomon K, Baker D, Richards RP, Dixon KR, Klaine SJ, La Point TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, Hall LW, Williams WM (1996) Ecologial risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15(1):31–76CrossRefGoogle Scholar
  34. Sousa JS, Castro RC, Andrade GA, Lima CG, Lima LK, Milhome MAL, Nascimento RF (2013) Evaluation of an analytical methodology using QuEChERS and GC-SQ/MS for the investigation of the level of pesticide residues in Brazilian melons. Food Chem 141(3):2675–2681CrossRefGoogle Scholar
  35. Ventura BC, Angelis DF, Marin-Morales MA (2008) Mutagenic and genotoxic effects of the atrazine herbicide in Oreochromis niloticus (Perciformes, Cichlidae) detected by the micronuclei test and the comet assay. Pestic Biochem Phys 90(1):42–51CrossRefGoogle Scholar
  36. Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43(1):1–10CrossRefGoogle Scholar
  37. Yang H, Zhou S, Li W, Liu O, Tu Y (2015) Residues, sources and potential biological risk of organochlorine pesticides in surface sediments of Qiandao Lake, China. Bull Environ Contam Toxicol. doi:10.1007/s00128-015-1553-1

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anayla S. Sousa
    • 1
  • Wersângela C. Duaví
    • 2
  • Rivelino M. Cavalcante
    • 2
  • Maria Aparecida L. Milhome
    • 3
  • Ronaldo F. do Nascimento
    • 1
  1. 1.Department of Analytical Chemistry and Physical ChemistryFederal University of CearáFortalezaBrazil
  2. 2.Marine Sciences InstituteFederal University of CearáFortalezaBrazil
  3. 3.Federal Institute of Education Science and Technology of CearáIguatuBrazil

Personalised recommendations