Advertisement

Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates

  • Mirco Bundschuh
  • Torsten Hahn
  • Bert Ehrlich
  • Sibylla Höltge
  • Robert Kreuzig
  • Ralf SchulzEmail author
Article

Abstract

Due to the high use of antibiotics and antiparasitics for the treatment of livestock, there is concern about the potential impacts of the release of these compounds into freshwater ecosystems. In this context, the present study quantified the acute toxicity of two antibiotics (sulfadiazine and sulfadimidine), and three antiparasitic agents (flubendazole, fenbendazole, ivermectin) for nine freshwater invertebrate species. These experiments revealed a low degree of toxicity for the sulfonamide antibiotics, with limited implications in the survival of all test species at the highest test concentrations (50 and 100 mg/L). In contrast, all three antiparasitic agents indicated on the basis of their acute toxicity risks for the aquatic environment. Moreover, chronic toxicity data from the literature for antiparasitics, including effects on reproduction in daphnids, support the concern about the integrity of aquatic ecosystems posed by releases of these compounds. Thus, these pharmaceuticals warrant further careful consideration by environmental risk managers.

Keywords

Sulfonamide antibiotics Benzimidazole anthelmintics Ivermectin Antiparasitics Predicted no effect concentration Predicted environmental concentration 

Notes

Acknowledgments

We gratefully acknowledge financial support by the German Federal Environmental Agency (UBA), Dessau, Germany (UBA-FKZ 20267435). The authors also wish to thank Philipp Egeler and Matthias Liess for providing some test species, and the companies Janssen Animal Health and Intervet Innovation GmbH for donating test substances. We are grateful to two anonymous reviewer for their valuable comments.

References

  1. ASTM (1998) Standard guide for acute toxicity test with the rotifer Brachionus E 1440Google Scholar
  2. Boonstra H, Reichman EP, van den Brink PJ (2011) Effects of the veterinary pharmaceutical ivermectin in indoor aquatic microcosms. Arch Environ Contam Toxicol 60:77–89CrossRefGoogle Scholar
  3. Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003a) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294ACrossRefGoogle Scholar
  4. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003b) Prioritisation of veterinary medicines in the UK environment. Toxicol Lett 142:207–218CrossRefGoogle Scholar
  5. Brenner S (1974) The genetics of Caenorhabditis elegans Genetics 77:71–94Google Scholar
  6. Bundschuh M, Hahn T, Gessner MO, Schulz R (2009) Antibiotics as a chemical stressor affecting an aquatic decomposer-detritivore system. Environ Toxicol Chem 28:197–203CrossRefGoogle Scholar
  7. Di Nica V, Menaballi L, Azimonti G, Finizio A (2015) RANKVET: a new ranking method for comparing and prioritizing the environmental risk of veterinary pharmaceuticals. Ecol Ind 52:270–276CrossRefGoogle Scholar
  8. EMEA (2008) Committee for medicinal products for veterinary use—revised guideline on envirnmental impact assessment for veterinary medicinal products. In support of the VICH guidelines GL6 and CL38, LondonGoogle Scholar
  9. FDA U (1995) Environmental assessment: NADA 128-620. Fenbendazole suspension 10% in dairy cattle of breeding age. United States Food and Drug AdministrationGoogle Scholar
  10. Garric J et al (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69:903–910CrossRefGoogle Scholar
  11. Hahn T, Schulz R (2007) Indirect effects of antibiotics in the aquatic environment: a laboratory study on detritivore food selection bahavior. Hum Ecol Risk Assess 13:535–542CrossRefGoogle Scholar
  12. Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18:1543–1563CrossRefGoogle Scholar
  13. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Ind 8:1–13CrossRefGoogle Scholar
  14. Kreuzig R, Höltge S, Heise J, Kolb M, Berenzen N, Hahn T, Jergentz S, Wogram J, Schulz R (2004) Untersuchungen zum Abflussverhalten von Veterinärpharmaka bei Ausbringung von Gülle auf Ackerland und Weide – Runoff-Projekt, Umweltbundesamt, DessauGoogle Scholar
  15. Kreuzig R, Höltge S, Brunotte J, Berenzen N, Wogram J, Schulz R (2005) Test-plot studies on run-off of sulfonamides from manured soils after sprinkler irrigation. Environ Toxicol Chem 24:777–781CrossRefGoogle Scholar
  16. Liebig M et al (2010) Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manag 6(Suppl):567–587. doi: 10.1002/ieam.96 CrossRefGoogle Scholar
  17. Löscher W, Ungemach FP, Kroker R (2003) Pharmakotherapie bei Haus- und Nutztieren, 6th edn. Parey Verlag, StuttgartGoogle Scholar
  18. Müller HG (1982) Sensitivity of Daphnia magna Straus against eight chemotherapeutic agents and two dyes. Bull Environ Contam Toxicol 28:1–2CrossRefGoogle Scholar
  19. Organization of Economic Co-operationand Development (OECD) (2004) Guidelines for the testing of chemicals no. 202. Daphnia sp., acute immobilisation testGoogle Scholar
  20. Oh SJ, Park J, Lee MJ, Park SY, Lee JH, Choi K (2006) Ecological hazard assessment of major veterinary benzimidazoles: acute and chronic toxicities to aquatic microbes and invertebrates. Environ Toxicol Chem 25:2221–2226CrossRefGoogle Scholar
  21. Sanderson H et al (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240CrossRefGoogle Scholar
  22. Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448CrossRefGoogle Scholar
  23. Traunspurger W, Haitzer M, Höss S, Beier S, Ahlf W, Steinberg C (1997) Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda)—a method for testing liquid medium and whole-sediment samples. Environ Toxicol Chem 16:245–250Google Scholar
  24. VICH (2004) VICH GL 38 environmental impact assessments (EIA’a) for veterinary medicinal products (VMP’s)—phase II guidance vol 166. Guidance for Industry. U.S. Department of Health and Human Services; Food and Drug Administration; Center for Veterinary MedicineGoogle Scholar
  25. Wagil M et al (2015a) Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environ Sci Pollut Res 22:2566–2573CrossRefGoogle Scholar
  26. Wagil M, Maszkowska J, Bialk-Bielinska A, Stepnowski P, Kumirska J (2015b) A comprehensive approach to the determination of two benzimidazoles in environmental samples. Chemosphere 119:S35–S41CrossRefGoogle Scholar
  27. Wollenberger L, Halling-Sorensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730CrossRefGoogle Scholar
  28. Zuccato E et al (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollut Res 13:15–21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mirco Bundschuh
    • 1
    • 2
  • Torsten Hahn
    • 3
    • 4
  • Bert Ehrlich
    • 1
  • Sibylla Höltge
    • 5
  • Robert Kreuzig
    • 5
  • Ralf Schulz
    • 1
    Email author
  1. 1.Institute for Environmental SciencesUniversity Koblenz-LandauLandauGermany
  2. 2.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Fraunhofer Institute for Toxicology and Experimental MedicineHannoverGermany
  4. 4.Zoological InstituteTechnical University of BraunschweigBraunschweigGermany
  5. 5.Institute of Environmental and Sustainable ChemistryTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations