Advertisement

PAH Metabolites in Bile of European Eel (Anguilla anguilla) from Morocco

  • Fatima Wariaghli
  • Ulrike Kammann
  • Reinhold Hanel
  • Ahmed Yahyaoui
Article

Abstract

Environmental pollution of fish with organic contaminants is a topic of rising attention in Morocco. Polycyclic aromatic hydrocarbons (PAH) are prominent organic contaminants which are rapidly metabolized in fish. Their metabolites are accumulated in the bile fluid and can be used to assess PAH exposure. The two PAH metabolites 1-hydroxypyrene and 1-hydroxyphenanthrene were quantified in European eels (Anguilla anguilla) from two Moroccan river systems by high-performance liquid chromatography with fluorescence detection. Mean values ranged from 52 to 210 ng/mL 1-hydroxypyrene and from 61 to 73 ng/mL 1-hydroxyphenanthrene. The overall concentrations of PAH metabolites in eel from Morocco appeared moderate compared to eel from European rivers and coastal sites. The present study provides first information on concentrations of PAH metabolites in fish from Morocco.

Keywords

PAH Fish Fresh water Pollution Morocco 

Notes

Acknowledgments

This work was supported by a Grant from the German Academic Exchange Service (DAAD) (A/08/97890) as well as the Moroccan-German Programme of Scientific Research (PMARS) Project 01DH13008 (“Traceability of Fish and Fish Products”). We thank Alexander Schulz for his skillful technical assistance. Any experiments comply with the current laws of the country in which they were performed.

References

  1. Azdi M, Moukrim A, Burgeot T, Budzinski H, Chiffoleau JF, Kaaya A, Zekhnini A, Narbonne JF, Guarrigues P (2006) Hydrocarbon pollution along Moroccan coasts and BPH activity in the mussel Perna perna. Polycycl Aromat Compd 26:265–282CrossRefGoogle Scholar
  2. Belpaire C, Goemans G (2007) Eels: contaminant cocktails pinpointing environmental contaminant. ICES J 64:1423–1436CrossRefGoogle Scholar
  3. Blahová J, Havelková M, Kružíková K, Hilscherová K, Halouzka R, Modrá H, Grabic R, Halířová J, Jurčíková J, Ocelka T, Haruštiaková D, Svobodová Z (2010) Assessment of contamination of the Svitava and Svratka rivers in the Czech Republic using selected biochemical markers. Environ Toxicol Chem 29:541–549CrossRefGoogle Scholar
  4. Bouachrine M, Fekhaoui M, Bennasser L, Idrissi L (1998) Distribution of selected metals in tissue samples of fish from an industrially contaminated stream (The River Sebou, Morocco). Acta Hydrobiol 40:173–179Google Scholar
  5. Brinkmann M, Hudjetz S, Cofalla C, Roger S, Kammann U, Zhang X, Wiseman S, Giesy J, Hecker M, Schüttrumpf H, Wölz J, Hollert H (2010) A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part I—multiple biomarkers in rainbow trout. J Soils Sediments 10:1347–1361CrossRefGoogle Scholar
  6. Brinkmann M, Eichbaum K, Kammann U, Hudjetz S, Cofalla C, Buchinger S, Reifferscheid G, Schüttrumpf H, Preuss T, Hollert H (2014) Physiologically-based toxicokinetic models help indentifying the key factors affecting contaminant uptake during flood events. Aquat Toxicol 152:38–42CrossRefGoogle Scholar
  7. Chafik T (2009) Evaluation of the soil contamination of Tangier (Morocco) by the determination of BTEX, PCBs, and PAHs. Soil Sediment Contam 18:766CrossRefGoogle Scholar
  8. Chen SC, Liao CM (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123CrossRefGoogle Scholar
  9. DIN, Deutsches Institut für Normung e.V. (1994) 32645, Nachweis-, Erfassungs- und Bestimmungsgrenze. Berlin Beuth Verlag, BerlinGoogle Scholar
  10. Durif CMF, Dufour S, Elie P (2005) The silvering process of Anguilla anguilla: a new classification from yellow resident to silver migrating stage. J Fish Biol 66:1025–1043CrossRefGoogle Scholar
  11. Eisler R (2007) Eisler’s encyclopedia of environmentally hazardous priority chemicals, 1st edn. Elsevier, AmsterdamGoogle Scholar
  12. El Bakouri H, Ouassini A, Morillo J, Usero J (2008) Pesticides in ground water beneath Loukkos perimeter, Northwest Morocco. J Hydrol 348:270–278CrossRefGoogle Scholar
  13. El Morhit M, Fekhaoui M, Élie P, Girard P, Yahyaoui A, El Abidi A, Jbilou M (2009) Heavy metals in sediment, water and the European glass eel, Anguilla Anguilla (Osteichthyes: Anguillidae), from Loukkos River estuary (Morocco, eastern Atlantic). Cybium 33:219–222Google Scholar
  14. El Morhit M, Fekhaoui M, Serghini A, El Blidi S, El Abidi A, Yahyaoui A, Hachimi M (2012) Étude de l’évolution spatio-temporelle des paramètres hydrologiques caractérisant la qualité des eaux de l’estuaire du Loukkos (Maroc). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie. 34(2):151–162Google Scholar
  15. Er-Raioui H, Bouzid S, Marhraoui M, Saliot A (2009) Hydrocarbon pollution of the Mediterranean coastline of Morocco. Ocean Coast Manag 52:124–129CrossRefGoogle Scholar
  16. Hajjaj Hassani L, Garrido Frenich A, Benajiba MH, González Rodríguez MJ, Martínez Vidal JL, Debdoubi A (2006) Assessment of butyltin and phenyltin pollution in the sea mullet, Mugil cephalus, along the Moroccan and Spanish Coasts (Mediterranean Sea). Arch Environ Contam Toxicol 51:608–614CrossRefGoogle Scholar
  17. Harman C, Holth TF, Hylland K, Thomas K, Grung M (2009) Relationship between polycyclic aromatic hydrocarbon (PAH) accumulation in semipermeable membrane devices and PAH bile metabolite levels in Atlantic cod (Gadus morhua). J Toxicol Environ Health A 72:234–243CrossRefGoogle Scholar
  18. HELCOM (2012) HELCOM Core indicators. http://www.helcom.fi/Lists/Publications/BSEP136.pdf#search=core%20set. Accessed 2 April 2015
  19. ICES (2011) International council for the exploration of the sea, report of the 2011 session of the joint EIFAAC/ICES working group on eels. Lisbon, Portugal. ICES CM 2011/ACOM: 18, 223 ppGoogle Scholar
  20. ICES (2012) International council for the exploration of the sea, cooperative research report 315: integrated marine environmental monitoring of chemicals and their effects. In: Davies IM, Vethaak D (eds) Copenhagen, Denmark, 277 ppGoogle Scholar
  21. ICES (2013) International council for the exploration of the sea, report of the workshop on evaluation progress eel management plans (WKEPEMP), 13–15 May 2013, Copenhagen, Denmark. ICES CM 2013/ACOM:32. 757 ppGoogle Scholar
  22. Kammann U (2007) PAH metabolites in bile fluide of dab (Limanda limanda) and flounder (Platichthys flesus): spatial distribution and seasonal changes. Environ Sci Pollut Res 14:102–108CrossRefGoogle Scholar
  23. Kammann U, Askem C, Dabrowska H, Grung M, Kirby MF, Koivisto P, Lucas C, McKenzie M, Meier S, Robinson C, Tairova ZM, Tuvikene A, Vuorinen PJ, Strand J (2013) Interlaboratory proficiency testing for measurement of the PAH metabolite 1-hydroxypyrene in fish bile for marine environmental monitoring. J AOAC Int 96:635–641CrossRefGoogle Scholar
  24. Kammann U, Brinkmann M, Freese M, Pohlmann J-D, Stoffels S, Hollert H, Hanel R (2014) PAH metabolites, GST and EROD in European eel (Anguilla anguilla) as possible indicators for eel habitat quality in German rivers. Environ Sci Pollut Res 1:2519–2530CrossRefGoogle Scholar
  25. Meador J, Stein J, Reichert W, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165Google Scholar
  26. Monteiro PR, Reis-Henriques MA, Coimbra J (2000) Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder (Platichthys flesus L.). Aquat Toxicol 48:549–559CrossRefGoogle Scholar
  27. Nagel F, Kammann U, Wagner C, Hanel R (2012a) Metabolites of polycyclic aromatic hydrocarbons (PAHs) in bile as biomarkers of pollution in European eel (Anguilla anguilla) from German rivers. Arch Environ Contam Toxicol 62:254–263CrossRefGoogle Scholar
  28. Nagel F, Wagner C, Hanel R, Kammann U (2012b) The silvering process in European eel (Anguilla anguilla) influences PAH metabolite concentration in bile fluid—consequences for monitoring. Chemosphere 87:91–96CrossRefGoogle Scholar
  29. OSPAR Commission (2008) Coordinated environmental monitoring programme (CEMP). http://www.ospar.org/content/content.asp?menu=00900301400000. Accessed 2 April 2015
  30. Pikkarainen AL (2006) Ethoxyresorufin-O-deethylase (EROD) activity and bile metabolites as contamination indicators in Baltic Sea perch: determination by HPLC. Chemosphere 65:1888–1897CrossRefGoogle Scholar
  31. Ruddock PJ, Bird DJ, McEvoy J, Peters LD (2003) Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in European eels Anguilla anguilla from United Kingdom estuaries. Sci Total Environ 301:105–117CrossRefGoogle Scholar
  32. Szlinder-Richert J, Nermer T, Szatkowska U (2014) PAH metabolites in European eels (Anguilla anguilla) as indicators of PAH exposure: different methodological approaches. Sci Total Environ 496:84–91CrossRefGoogle Scholar
  33. Tairova ZM, Giessing AMB, Hansen R, Andersen O (2009) 1-Hydroxypyrene as a biomarker of PAH exposure in the marine polychaete Nereis diversicolor. Mar Environ Res 67:38–46CrossRefGoogle Scholar
  34. Vuorinen PJ, Keinänen M, Vuontisjärvi H, Barsiene J, Broeg K, Förlin L, Gercken J, Kopecka J, Köhler A, Parkkonen J, Pempkowiak J, Schiedek D (2006) Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Mar Pollut Bull 53:479–487CrossRefGoogle Scholar
  35. Wariaghli F, Tilghman-Sibille A, El Abidi A, El Hamri H, Fekhaoui M, Yahyaoui A (2013) Anguilla anguilla L.: evaluation of the degree of heavy metal contamination in the Sebou estuary and in Moulay Bousselham lagoon reserve (Morocco). Int J Aquatic Sci 4:69–82Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Thünen Institute of Fisheries EcologyHamburgGermany
  2. 2.Laboratory of Zoology and General Biology, Faculty of ScienceMohammed V-Agdal UniversityRabatMorocco

Personalised recommendations