Advertisement

The Parthenogenetic Cosmopolitan Chironomid, Paratanytarsus grimmii, as a New Standard Test Species for Ecotoxicology: Culturing Methodology and Sensitivity to Aqueous Pollutants

  • Bryant S. GagliardiEmail author
  • Sara M. Long
  • Vincent J. Pettigrove
  • Ary A. Hoffmann
Article

Abstract

Chironomids from the genus Chironomus are widely used in laboratory ecotoxicology, but are prone to inbreeding depression, which can compromise test results. The standard Chironomus test species (C. riparius, C. dilutus and C. yoshimatsui) are also not cosmopolitan, making it difficult to compare results between geographic regions. In contrast, the chironomid Paratanytarsus grimmii is cosmopolitan, and not susceptible to inbreeding depression because it reproduces asexually by apomictic parthenogenesis. However, there is no standardised culturing methodology for P. grimmii, and a lack of acute toxicity data for common pollutants (metals and pesticides). In this study, we developed a reliable culturing methodology for P. grimmii. We also determined 24-h first instar LC50s for the metals Cu, Pb, Zn, Cd and the insecticide imidacloprid. By developing this culturing methodology and generating the first acute metal and imidacloprid LC50s for P. grimmii, we provide a basis for using P. grimmii in routine ecotoxicological testing.

Keywords

Aquatic ecotoxicology Chironomidae Inbreeding depression Paratanytarsus grimmii Laboratory culture Apomictic parthenogenesis Chironomus 

Notes

Acknowledgments

We thank Dr. Lisa Golding, Patrick Bonney, Rebecca Reid and Katherine Jeppe for collecting the original P. grimmii stocks. Funding was provided by the Centre for Aquatic Pollution Identification and Management.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Anderson RL, Walbridge CT, Fiandt JT (1980) Survival and growth of Tanytarsus dissimilis (Chironomidae) exposed to copper, cadmium, zinc, and lead. Arch Environ Contam Toxicol 9:329–335CrossRefGoogle Scholar
  2. Baird DJ, Barber I, Bradley M, Calow P, Soares AM (1989) The Daphnia bioassay: a critique. Environmental bioassay techniques and their application. Springer, Netherlands, pp 403–406CrossRefGoogle Scholar
  3. Béchard K, Gillis P, Wood C (2008) Acute toxicity of waterborne Cd, Cu, Pb, Ni, and Zn to first-instar Chironomus riparius larvae. Arch Environ Contam Toxicol 54:454–459CrossRefGoogle Scholar
  4. Bradley MC, Naylor C, Calow P, Baird DJ, Barber I, Soares A (1993) Reducing variability in Daphnia toxicity tests—a case for further standardization. Progress in standardization of aquatic toxicity tests. Lewis, Boca Raton, pp 57–70Google Scholar
  5. Brown AR, Bickley LK, Le Page G, Hosken DJ, Paull GC, Hamilton PB, Owen SF, Robinson J, Sharpe AD, Tyler CR (2011) Are toxicological responses in laboratory (inbred) zebrafish representative of those in outbred (wild) populations?—A case study with an endocrine disrupting chemical. Environ Sci Technol 45:4166–4172CrossRefGoogle Scholar
  6. Cairns J Jr (1986) The myth of the most sensitive species. BioScience 36:670–672CrossRefGoogle Scholar
  7. Calow P (1992) The three Rs of ecotoxicology. Funct Ecol 6:617–619Google Scholar
  8. Carew M, Gagliardi B, Hoffmann AA (2013) Mitochondrial DNA suggests a single maternal origin for the widespread triploid parthenogenetic pest species, Paratanytarsus grimmii, but microsatellite variation shows local endemism. Insect Sci 20:345–357CrossRefGoogle Scholar
  9. Colombo V, Mohr S, Berghahn R, Pettigrove VJ (2013) Structural changes in a macrozoobenthos assemblage after imidacloprid pulses in aquatic field-based microcosms. Arch Environ Contam Toxicol 65:683–692CrossRefGoogle Scholar
  10. Colombo V, Pettigrove VJ, Golding LA, Hoffmann AA (2014) Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges. Ecotoxicol Environ Safe 110:1–7CrossRefGoogle Scholar
  11. DTIC Document. European Commission (2006) Draft Assessment Report (DAR)—Public Version—Initial Risk Assessment provided by the Rapporteur Member State Germany for the existing active substance imidacloprid of the third stage (part A) of the Review Programme Referred to in Article 8(2) of Council Directive 91/414/EECGoogle Scholar
  12. Eisler R (1994) Acrolein hazards to fish, wildlife, and invertebrates: a synoptic reviewGoogle Scholar
  13. Forbes VE, Forbes TL (1993) Ecotoxicology and the power of clones. Funct Ecol 7(4):511–512Google Scholar
  14. Gaskell PN, Brooks AC, Maltby L (2007) Variation in the bioaccumulation of a sediment-sorbed hydrophobic compound by benthic macroinvertebrates: patterns and mechanisms. Environ Sci Technol 41(5):1783–1789CrossRefGoogle Scholar
  15. Gersich FM, Milazzo DP, Landenberger BD (1989) A comparison of seven diets used to culture Tanytarsus dissimilis. In: Cowgill UM, Williams LR (eds) Aquatic toxicology and hazard assessment, vol 12. ASTM, Philadelphia, pp 392–401CrossRefGoogle Scholar
  16. Giudice BD, Young TM (2010) The antimicrobial triclocarban stimulates embryo production in the freshwater mudsnail Potamopyrgus antipodarum. Environ Toxicol Chem 29:966–970CrossRefGoogle Scholar
  17. Goedkoop W, Spann N, Åkerblom N (2010) Sublethal and sex-specific cypermethrin effects in toxicity tests with the midge Chironomus riparius Meigen. Ecotoxicology 19:1201–1208CrossRefGoogle Scholar
  18. Hamerlík L, Jacobsen D, Brodersen KP (2011) Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies. Urban Ecosyst 14:457–468CrossRefGoogle Scholar
  19. Hatakeyama S, Yasuno M (1981) A method for assessing chronic effects of toxic substances on the midge, Paratanytarsus parthenogeneticus—effects of copper. Arch Environ Contam Toxicol 10:705–713CrossRefGoogle Scholar
  20. Holcombe GW, Phipps GL, Sulaiman AH, Hoffman AD (1987) Simultaneous multiple species testing: acute toxicity of 13 chemicals to 12 diverse freshwater amphibian, fish, and invertebrate families. Arch Environ Contam Toxicol 16:697–710CrossRefGoogle Scholar
  21. Jeppe KJ, Carew ME, Long SM, Lee SF, Pettigrove V, Hoffmann AA (2014) Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 162:1–6CrossRefGoogle Scholar
  22. Khangarot BS, Ray PK (1989) Sensitivity of midge larvae of Chironomus tentans Fabricius (Diptera Chironomidae) to heavy metals. Bull Environ Contam Toxicol 42(3):325–330CrossRefGoogle Scholar
  23. Kleiven OT, Larsson P, Hobæk A (1992) Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65(2):197–206CrossRefGoogle Scholar
  24. Konishi T, Kondo S, Uchiyama N (2008) Larvicidal activities of sesquiterpenes from Inula helenium (Compositae) against Aedes albopictus (Diptera: Culicidae) and Paratanytarsus grimmii (Diptera: Chironomidae). Appl Entomol Zool 43(1):77–81CrossRefGoogle Scholar
  25. Langton PH, Cranston PS, Armitage P (1988) The parthenogenetic midge of water supply systems, Paratanytarsus grimmii (Schneider) (Diptera: Chironomidae). Bull Entomol Res 78(02):317–328CrossRefGoogle Scholar
  26. Marinkovic M, Verweij RA, Nummerdor GA, Jonker MJ, Kraak MH, Admiraal W (2011) Life cycle responses of the midge Chironomus riparius to compounds with different modes of action. Environ Sci Technol 45(4):1645–1651CrossRefGoogle Scholar
  27. Meier PG, Choi K, Sweet LI (2000) Acute and chronic life cycle toxicity of acenaphthene and 2, 4, 6-trichlorophenol to the midge Paratanytarsus parthenogeneticus (Diptera: Chironomidae). Aquat Toxicol 51(1):31–44CrossRefGoogle Scholar
  28. Nebeker AV, Cairns MA, Wise CM (1984) Relative sensitivity of Chironomus tentans life stages to copper. Environ Toxicol Chem 3:151–158CrossRefGoogle Scholar
  29. Nowak C, Jost D, Vogt C, Oetken M, Schwenk K, Oehlmann J (2007a) Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius. Aquat Toxicol 85:278–284CrossRefGoogle Scholar
  30. Nowak C, Vogt C, Diogo JB, Schwenk K (2007b) Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environ Toxicol Chem 26:1018–1022CrossRefGoogle Scholar
  31. OECD (2010) Test No. 233: Sediment-water chironomid life-cycle toxicity test using spiked water or spiked sediment. OECD PublishingGoogle Scholar
  32. OECD (2011) Test No. 235: Chironomus sp., acute immobilisation test. OECD PublishingGoogle Scholar
  33. Oladimeji AA, Offem BO (1989) Toxicity of lead to Clarias lazera, Oreochromis niloticus, Chironomus tentans and Benacus sp. Water Air Soil Pollut 44(3–4):191–201CrossRefGoogle Scholar
  34. Olsen A, Bale JS, Leadbeater BSC, Callow ME, Holden JB (2003) Developmental thresholds and day-degree requirements of Paratanytarsus grimmii and Corynoneura scutellata (Diptera: Chironomidae): two midges associated with potable water treatment. Physiol Entomol 28(4):315–322CrossRefGoogle Scholar
  35. Pettigrove V, Hoffmann A (2005) A field-based microcosm method to assess the effects of polluted urban stream sediments on aquatic macroinvertebrates. Environ Toxicol Chem 24:170–180CrossRefGoogle Scholar
  36. Porter DL (1971) Oogenesis and chromosomal heterozygosity in the thelytokous midge, Lundstroemia parthenogenetica (Diptera, Chironomidae). Chromosoma 32:332–342CrossRefGoogle Scholar
  37. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  38. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22Google Scholar
  39. Sato H, Yasuno M (1979) Test on chironomidae larvae susceptibility to various insecticides. Jpn J Sanit Zool 30:361–366Google Scholar
  40. Sharley DJ, Hoffmann AA, Pettigrove V (2008) Effects of sediment quality on macroinvertebrates in the Sunraysia region of the Murray-Darling Rivers, Australia. Environ Pollut 156(3):689–698CrossRefGoogle Scholar
  41. Soares A, Calow P (1993) Seeking standardization in ecotoxicology. Progress in standardization of aquatic toxicity tests. Lewis, Boca Raton, pp 1–6Google Scholar
  42. Somparn A, Iwai C, Noller B (2010) Development of the indigenous chironomid species as ecotoxicology test: tool for water quality management in Thailand. Int J Environ Rural Dev 1(1):31–36Google Scholar
  43. Stoughton SJ, Liber K, Culp J, Cessna A (2008) Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol 54:662–673CrossRefGoogle Scholar
  44. Taenzler V, Bruns E, Dorgerloh M, Pfeifle V, Weltje L (2007) Chironomids: suitable test organisms for risk assessment investigations on the potential endocrine disrupting properties of pesticides. Ecotoxicology 16(1):221–230CrossRefGoogle Scholar
  45. Townsend KR, Pettigrove VJ, Hoffmann AA (2012) Food limitation in Chironomus tepperi: effects on survival, sex ratios and development across two generations. Ecotoxicol Environ Safe 84:1–8CrossRefGoogle Scholar
  46. Vandegehuchte MB, Janssen CR (2011) Epigenetics and its implications for ecotoxicology. Ecotoxicology 20:607–624CrossRefGoogle Scholar
  47. Vandegehuchte M, Lemière F, Janssen C (2009) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C Toxicol Pharmacol 150:343–348CrossRefGoogle Scholar
  48. Wang W (1987) Factors affecting metal toxicity to (and accumulation by) aquatic organisms—Overview. Environ Int 31(6):437–457CrossRefGoogle Scholar
  49. Watts MM, Pascoe D (2000) A comparative study of Chironomus riparius Meigen and Chironomus tentans Fabricius (Diptera: Chironomidae) in aquatic toxicity tests. Arch Environ Contam Toxicol 39(3):299–306CrossRefGoogle Scholar
  50. Williams KA, Green DWJ, Pascoe C, Gower DE (1986) The acute toxicity of cadmium to different larval stages of Chironomus riparius (Diptera: Chironomidae) and its ecological significance for pollution regulation. Oecologia 70:362–366CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bryant S. Gagliardi
    • 1
    Email author
  • Sara M. Long
    • 2
  • Vincent J. Pettigrove
    • 1
  • Ary A. Hoffmann
    • 2
  1. 1.Centre for Aquatic Pollution Identification and Management (CAPIM), BioSciences 4, School of BioSciencesThe University of MelbourneParkvilleAustralia
  2. 2.Centre for Aquatic Pollution Identification and Management (CAPIM), Bio21 Institute and School of BioSciencesThe University of MelbourneParkvilleAustralia

Personalised recommendations