Advertisement

Photodegradation of Ibuprofen Under UV–Vis Irradiation: Mechanism and Toxicity of Photolysis Products

  • Fu Hua Li
  • Kun Yao
  • Wen Ying Lv
  • Guo Guang LiuEmail author
  • Ping Chen
  • Hao Ping Huang
  • Ya Pu Kang
Article

Abstract

The photodegradation of ibuprofen (IBP) in aqueous media was studied in this paper. The degradation mechanism, the reaction kinetics and toxicity of the photolysis products of IBP under UV–Vis irradiation were investigated by dissolved oxygen experiments, quenching experiments of reactive oxygen species (ROS), and toxicity evaluation utilizing Vibrio fischeri. The results demonstrated that the IBP degradation process could be fitted by the pseudo first-order kinetics model. The degradation of IBP by UV–Vis irradiation included direct photolysis and self-sensitization via ROS. The presence of dissolved oxygen inhibited the photodegradation of IBP, which indicated that direct photolysis was more rapid than the self-sensitization. The contribution rates of ·OH and 1O2 were 21.8 % and 38.6 % in self-sensitization, respectively. Ibuprofen generated a number of intermediate products that were more toxic than the base compound during photodegradation.

Keywords

Ibuprofen Photodegradation Mechanism Kinetics Toxicity 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 21377031).

References

  1. Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in the aquatic environment: a review. Aquat Sci 65:320–341. doi: 10.1007/s00027-003-0672-7 CrossRefGoogle Scholar
  2. Boreen AL, Edhlund BL, Cotner JB, McNeill K (2008) Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources. Environ Sci Technol 42:5492–5498. doi: 10.1021/es800185d CrossRefGoogle Scholar
  3. Buser H-R, Poiger T, Müller MD (1999) Occurrence and environmental behaviour of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33:2529–2535. doi: 10.1021/es981014w CrossRefGoogle Scholar
  4. Carballa M et al (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926. doi: 10.1016/j.watres.2004.03.029 CrossRefGoogle Scholar
  5. Carlos L, Mártire DO, Gonzalez MC, Gomis J, Bernabeu A, Amat AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46:4732–4740. doi: 10.1016/j.watres.2012.06.022 CrossRefGoogle Scholar
  6. Castell JV, Gomez MJ, Miranda MA, Morera IM (1987) Photolytic degradation of ibuprofen. Toxicity of the isolated photoproducts on fibroblasts and erythrocytes. Photochem Photobiol 46:991–996. doi: 10.1111/j.1751-1097.1987.tb04882.x CrossRefGoogle Scholar
  7. Contardo-Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C (2011) Exposure to human pharmaceuticals Carbamazepine Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol 105:428–437. doi: 10.1016/j.aquatox.2011.07.017 CrossRefGoogle Scholar
  8. David A, Pancharatna K (2009) Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio). Environ Toxicol Pharmacol 27:390–395. doi: 10.1016/j.etap.2009.01.002 CrossRefGoogle Scholar
  9. Doll TE, Frimmel FH (2003) Fate of pharmaceuticals—photodegradation by simulated solar UV-light. Chemosphere 52:1757–1769. doi: 10.1016/s0045-6535(03)00446-6 CrossRefGoogle Scholar
  10. Elorriaga Y, Marino DJ, Carriquiriborde P, Ronco AE (2012) Human pharmaceuticals in wastewaters from urbanized areas of Argentina. Bull Environ Contam Toxicol 90:397–400. doi: 10.1007/s00128-012-0919-x CrossRefGoogle Scholar
  11. Hofmann J, Freier U, Wecks M, Hohmann S (2007) Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2. Appl Catal B Environ 70:447–451. doi: 10.1016/j.apcatb.2005.11.023 CrossRefGoogle Scholar
  12. Jacobs LE, Fimmen RL, Chin Y-P, Mash HE, Weavers LK (2011) Fulvic acid mediated photolysis of ibuprofen in water. Water Res 45:4449–4458. doi: 10.1016/j.watres.2011.05.041 CrossRefGoogle Scholar
  13. Miolo G, Viola G, Vedaldi D, Dall’Acqua F, Fravolini A, Tabarrini O, Cecchetti V (2002) In vitro phototoxic properties of new 6-desfluoro and 6-fluoro-8-methylquinolones. Toxicol In Vitro 16:683–693. doi: 10.1016/S0887-2333(02)00093-0 CrossRefGoogle Scholar
  14. Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat Sci 65:342–351. doi: 10.1007/s00027-003-0671-8 CrossRefGoogle Scholar
  15. Parolini M, Binelli A, Provini A (2011) Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol Environ Saf 74:1586–1594. doi: 10.1016/j.ecoenv.2011.04.025 CrossRefGoogle Scholar
  16. Radjenović J, Petrović M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841. doi: 10.1016/j.watres.2008.11.043 CrossRefGoogle Scholar
  17. Saravanan M, Devi KU, Malarvizhi A, Ramesh M (2012) Effects of Ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ Toxicol Pharmacol 34:14–22. doi: 10.1016/j.etap.2012.02.005 CrossRefGoogle Scholar
  18. Silva JCCd, Teodoro JAR, Afonso RJdCF, Aquino SF, Augusti R (2014) Photolysis and photocatalysis of ibuprofen in aqueous medium: characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia salina. J Mass Spectrom 49:145–153. doi: 10.1002/jms.3320 CrossRefGoogle Scholar
  19. Szabó RK, Megyeri C, Illés E, Gajda-Schrantz K, Mazellier P, Dombi A (2011) Phototransformation of ibuprofen and ketoprofen in aqueous solutions. Chemosphere 84:1658–1663. doi: 10.1016/j.chemosphere.2011.05.012 CrossRefGoogle Scholar
  20. Ternes TA et al (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863. doi: 10.1021/es015757k CrossRefGoogle Scholar
  21. Trenholm RA, Vanderford BJ, Holady JC, Rexing DJ, Snyder SA (2006) Broad range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography tandem mass spectrometry. Chemosphere 65:1990–1998. doi: 10.1016/j.chemosphere.2006.07.004 CrossRefGoogle Scholar
  22. Vione D et al (2011) Modelling the photochemical fate of ibuprofen in surface waters. Water Res 45:6725–6736. doi: 10.1016/j.watres.2011.10.014 CrossRefGoogle Scholar
  23. Yamamoto H et al (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362. doi: 10.1016/j.watres.2008.10.039 CrossRefGoogle Scholar
  24. Zhang N, Liu GG, Liu HJ, Wang YL, He ZW, Wang G (2011) Diclofenac photodegradation under simulated sunlight: effect of different forms of nitrogen and Kinetics. J Hazard Mater 192:411–418. doi: 10.1016/j.jhazmat.2011.05.038 Google Scholar
  25. Zheng BG, Zheng Z, Zhang JB, Luo XZ, Wang JQ, Liu Q, Wang LH (2011) Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination 276:379–385. doi: 10.1016/j.desal.2011.03.078 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fu Hua Li
    • 1
  • Kun Yao
    • 1
  • Wen Ying Lv
    • 1
  • Guo Guang Liu
    • 1
    Email author
  • Ping Chen
    • 1
  • Hao Ping Huang
    • 1
  • Ya Pu Kang
    • 1
  1. 1.School of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations