Advertisement

PHA-Stimulated Immune-Responsiveness in Mercury-Dosed Zebra Finches Does Not Match Results from Environmentally Exposed Songbirds

  • Mitchell T. Caudill
  • Eliza L. Spear
  • Claire W. Varian-Ramos
  • Daniel A. CristolEmail author
Article

Abstract

Dietary mercury exposure is associated with suppressed immune responsiveness in birds. This study examined the immune-responsiveness of domestic zebra finches (Taeniopygia guttata) experimentally exposed to mercury through their diet. We used the phytohemagglutinin (PHA) skin-swelling test to assay the effect of two modes of mercury exposure. Some finches received exposure to mercury only after reaching sexual maturity, while others were maintained on a mercury-dosed diet throughout life, including development. Each bird received one of five dietary concentrations of methylmercury cysteine (0.0, 0.3, 0.6, 1.2 or 2.4 ppm). In contrast to a study on wild songbirds at a mercury-contaminated site, we detected no relationship between mercury level and immunological response to PHA, regardless of mode of exposure. This result represents the first major difference found by our laboratory between wild birds exposed to environmental mercury and captive birds experimentally exposed to mercury.

Keywords

Immune responsiveness Mercury Phytohemagglutinin Zebra finch 

Notes

Acknowledgments

Research was completed with oversight from the South River Science Team, a collaboration of state and federal agencies, academic institutions, and environmental interests. Funding was provided by E. I. duPont de Nemours and company. Thank you to M. Whitney and R. Ellick for technical assistance. Special thanks to all the student researchers who assisted with data gathering, particularly K. Buck, J. Ebers, J. Kihm, M. Kobiela, S. Maddux, G. Mahjoub, J. Spickler, S. Talegaonkar, and K. Wright.

References

  1. Andre J-B, Ferdy J-B, Godelle B (2003) Within-host parasite dynamics, emerging trade-off, and evolution of virulence with immune system. Evolution 57:1489–1497. doi: 10.1111/j.0014-3820.2003.tb00357.x CrossRefGoogle Scholar
  2. Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141. doi: 10.1007/s10646-007-0163-z CrossRefGoogle Scholar
  3. Burger J, Gochfeld M (1997) Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environ Res 75:160–172. doi: 10.1006/enrs.1997.3778 CrossRefGoogle Scholar
  4. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335. doi: 10.1126/science.1154082 CrossRefGoogle Scholar
  5. Das K, Siebert U, Gillet A, Dupont A, Di-Poi C, Fonfara S, Mazzucchelli G, De Pauw E, De Pauw-Gillet M-C (2008) Mercury immune toxicity in harbour seals: links to in vitro toxicity. Environ Health 7:52–69. doi: 10.1186/1476-069X-7-52 CrossRefGoogle Scholar
  6. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37. doi: 10.1038/nrc1782 CrossRefGoogle Scholar
  7. Finkelstein ME, Grasman KA, Croll DA, Tershy BR, Keitt BS, Jarman WM, Smith DR (2007) Contaminant-associated alteration of immune function in black-footed albatross (Phoebastria nigripes), a North Pacific predator. Environ Toxicol Chem 26:1896–1903. doi: 10.1897/06-505R.1 CrossRefGoogle Scholar
  8. Franceschini MD, Lane OP, Evers DC, Reed JM, Hoskins B, Romero LM (2009) The corticosterone stress response and mercury contamination in free-living tree swallows, Tachycineta bicolor. Ecotoxicology 18:514–521. doi: 10.1007/s10646-009-0309-2 CrossRefGoogle Scholar
  9. Frouin H, Loseto LL, Stern GA, Haulena M, Ross PS (2012) Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection. Aquat Toxicol 109:185–193. doi: 10.1016/j.aquatox.2011.09.021 CrossRefGoogle Scholar
  10. Goto N, Kodama H, Okada K, Fujimoto Y (1978) Suppression of phytohemagglutinin skin response in thymectomized chickens. Poultry Sci 57:246–250. doi: 10.3382/ps.0570246 CrossRefGoogle Scholar
  11. Hallinger KK, Cristol DA (2011) The role of weather in mediating the effect of mercury exposure on reproductive success in tree swallows. Ecotoxicology 20:1368–1377. doi: 10.1007/s10646-011-0694-1 CrossRefGoogle Scholar
  12. Hallinger KK, Zabransky DJ, Kazmer KA, Cristol DA (2010) Birdsong differs between mercury-polluted and reference sites. Auk 127:156–161. doi: 10.1525/auk.2009.09058 CrossRefGoogle Scholar
  13. Hawley DM, Hallinger KK, Cristol DA (2009) Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology 18:499–503. doi: 10.1007/s10646-009-0307-4 CrossRefGoogle Scholar
  14. Henry KA, Varian-Ramos CW, Cristol DA, Bradley EL (2014) Oxidative damage in livers of zebra finches dosed with mercury. Ecotoxicology. doi: 10.1007/s10646-014-1400-x Google Scholar
  15. Herring G, Ackerman JT, Herzog MP (2012) Mercury exposure may suppress baseline corticosterone levels in juvenile birds. Environ Sci Technol 46:6339–6346. doi: 10.1021/es300668c CrossRefGoogle Scholar
  16. Holloway J, Scheuhammer AM, Chan HM (2003) Assessment of white blood cell phagocytosis as an immunological indicator of methylmercury exposure in birds. Arch Environ Contam Toxicol 44:493–501. doi: 10.1007/s00244-002-2095-1 CrossRefGoogle Scholar
  17. Jackson AK, Evers DC, Folsom SB, Condon AM, Diener J, Goodrick LF, McGann AJ, Schmerfeld J, Cristol DA (2011) Mercury exposure in terrestrial birds far downstream of an historical point source. Environ Pollut 159:3302–3308. doi: 10.1016/j.envpol.2011.08.046 CrossRefGoogle Scholar
  18. Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137. doi: 10.1038/ni1303 CrossRefGoogle Scholar
  19. Keller RH, Xie L, Buchwalter DB, Franzreb KE, Simons TR (2014) Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations. Ecotoxicology 23:304–316. doi: 10.1007/s10646-013-1174-6 CrossRefGoogle Scholar
  20. Kenow KP, Grasman KA, Hines RK, Meyer MW, Gendron-Fitzpatrick A, Spalding MG, Gray BR (2007) Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer). Environ Toxicol Chem 26:1460–1469. doi: 10.1897/06-442R.1 CrossRefGoogle Scholar
  21. Lewis CA, Cristol DA, Swaddle JP, Varian-Ramos CW, Zwollo P (2013) Decreased immune response in zebra finches exposed to sublethal doses of mercury. Arch Environ Contam Toxicol 64:327–336. doi: 10.1007/s00244-012-9830-z CrossRefGoogle Scholar
  22. Martin LB II, Han P, Lewittes J, Kuhlman KC, Klasing KC, Wikelski M (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–299. doi: 10.1111/j.1365-2435.2006.01094.x CrossRefGoogle Scholar
  23. Moore CS, Cristol DA, Maddux SL, Varian-Ramos CW, Bradley EL (2014) Lifelong exposure to methylmercury disrupts stress-induced corticosterone response in zebra finches (Taeniopygia guttata). Environ Toxicol Chem 33:1072–1076. doi: 10.1002/etc.2521 CrossRefGoogle Scholar
  24. Moszczynski P (1997) Mercury compounds and the immune system: a review. Int J Occup Med Environ Health 10:247–258Google Scholar
  25. Navarro C, Marzal A, De Lope F, Moller AP (2003) Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101:291–298. doi: 10.1034/j.1600-0706.2003.11663.x CrossRefGoogle Scholar
  26. Nicholson JK, Osborn D (1984) Kidney lesions in juvenile starlings Sturnus vulgaris fed on a mercury-contaminated synthetic diet. Environ Pollut Ser A Ecol Biol 33:195–206. doi: 10.1016/0143-1471(84)90010-2 CrossRefGoogle Scholar
  27. Reiche EMV, Nunes SOV, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625. doi: 10.1016/S1470-2045(04)01597-9 CrossRefGoogle Scholar
  28. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–19. doi: 10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2 CrossRefGoogle Scholar
  29. Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular war. Trends Ecol Evol 23:318–326. doi: 10.1016/j.tree.2008.02.011 CrossRefGoogle Scholar
  30. Selin NE (2013) Global change and mercury cycling: challenges for implementing a global mercury treaty. Environ Toxicol Chem. doi: 10.1002/etc.2374 Google Scholar
  31. Siebert U, Joiris C, Holsbeek L, Benke H, Failing K, Frese K, Petzinger E (1999) Potential relation between mercury concentrations and necropsy findings in cetaceans from German waters of the North and Baltic Seas. Mar Pollut Bull 38:285–295. doi: 10.1016/S0025-326X(98)00147-7 CrossRefGoogle Scholar
  32. Singaram G, Harikrishnan T, Chen F-Y, Jun B, Giesy JP (2013) Modulation of immune-associated parameters and antioxidant responses in the crab (Scylla serrata) exposed to mercury. Chemosphere 90:917–928. doi: 10.1016/j.chemosphere.2012.06.031 CrossRefGoogle Scholar
  33. Smits JE, Bortolotti GR, Tella JL (2002) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572. doi: 10.1046/j.1365-2435.1999.00338.x CrossRefGoogle Scholar
  34. Spickler JL (2014) Effects of sublethal methylmercury exposure on pigment coloration in a model songbird. Masters thesis, College of William and Mary, WilliamsburgGoogle Scholar
  35. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169. doi: 10.1084/jem.20011171 CrossRefGoogle Scholar
  36. Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One 3:e295. doi: 10.1371/journal.pone.0003295 CrossRefGoogle Scholar
  37. Thompson CK, Sakaluk SK, Masters BS, Johnson BGP, Vogel LA, Forsman AM, Johnson LS (2014) Condition-dependent sex difference in nestling house wren (Troglodytes aedon) response to phytohaemagglutinin injection. Can J Zool 92:1–7. doi: 10.1139/cjz-2013-0140 CrossRefGoogle Scholar
  38. Varian-Ramos CW, Swaddle JP, Cristol DA (2014) Mercury reduces avian reproductive success and imposes selection: an experimental study with adult- or lifetime-exposure in zebra finch. PLoS One 9:e95674. doi: 10.1371/journal.pone.0095674 CrossRefGoogle Scholar
  39. Wada H, Cristol DA, McNabb FMA, Hopkins WA (2009) Suppressed adrenocortical responses and thyroid hormone levels in birds near a mercury-contaminated river. Environ Sci Technol 43:6031–6038. doi: 10.1021/es803707f CrossRefGoogle Scholar
  40. White AE, Cristol DA (2014) Plumage coloration in belted kingfishers (Megaceryle alcyon) at a mercury-contaminated river. Waterbirds 37:144–152. doi: 10.1675/063.037.0203 CrossRefGoogle Scholar
  41. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi: 10.1002/etc.5620170203 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mitchell T. Caudill
    • 1
  • Eliza L. Spear
    • 1
  • Claire W. Varian-Ramos
    • 1
  • Daniel A. Cristol
    • 1
    Email author
  1. 1.Department of Biology, Institute for Integrative Bird Behavior StudiesCollege of William and MaryWilliamsburgUSA

Personalised recommendations