Effects of Five Antifouling Biocides on Settlement and Growth of Zoospores from the Marine Macroalga Ulva lactuca L.

  • Ida Wendt
  • Åsa Arrhenius
  • Thomas Backhaus
  • Annelie Hilvarsson
  • Kristina Holm
  • Katherine Langford
  • Timur Tunovic
  • Hans Blanck
Article

Abstract

Antifouling biocides are found in the marine ecosystem were they can affect non-target organisms. In this study the effects of five antifouling biocides on the settlement and growth of Ulva lactuca zoospores were investigated. The biocides investigated were copper (Cu2+), 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone (DCOIT), triphenylborane pyridine (TPBP), tolylfluanid and medetomidine. Full concentration–response curves where determined for each compound. EC50 values were determined for copper, DCOIT, TPBP and tolylfluanid, all of which inhibited settlement and growth in a concentration dependent manner with the following toxicity ranking; tolylfluanid (EC50 80 nmol L−1) ~ DCOIT (EC50 83 nmol L−1) > TPBP (EC50 400 nmol L−1) > Cu2+ (EC50 2,000 nmol L−1). Medetomidine inhibited settlement and growth only at the extreme concentration of 100,000 nmol L−1 (93 % effect). The low toxicity is possibly a consequence of a lack of receptors that medetomidine can bind to in the U. lactuca zoospores.

Keywords

Antifouling Ulva Biocide Reproductive body Marine macroalgae Toxicity 

References

  1. Andersson S, Kautsky L (1996) Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Mar Biol 125:171–176CrossRefGoogle Scholar
  2. Beckon WN, Parkins C, Maximovich A, Beckon AV (2008) A general approach to modeling biphasic relationships. Environ Sci Technol 42:1308–1314CrossRefGoogle Scholar
  3. Blanck H, Eriksson KM, Grönvall F, Dahl B, Guijarro KM, Birgersson G, Kylin H (2009) A retrospective analysis of contamination and periphyton pict patterns for the antifoulant irgarol 1051, around a small marina on the swedish west coast. Mar Pollut Bull 58:230–237CrossRefGoogle Scholar
  4. Bond P, Brown M, Moate R, Gledhill M, Hill S, Nimmo M (1999) Arrested development in Fucus spiralis (Phaeophyceae) germlings exposed to copper. Eur J Phycol 34:513–521CrossRefGoogle Scholar
  5. Braithwaite RA, Fletcher RL (2005) The toxicity of irgarol 1051 and sea-nine 211 to the non-target macroalga Fucus serratus Linnaeus, with the aid of an image capture and analysis system. J Exp Mar Biol Ecol 322:111–121CrossRefGoogle Scholar
  6. Callow ME, Callow JA (2000) Substratum location and zoospore behaviour in the fouling alga Enteromorpha. Biofouling 15:49–56CrossRefGoogle Scholar
  7. Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465CrossRefGoogle Scholar
  8. Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85:184–191CrossRefGoogle Scholar
  9. Han T, Kang SH, Park JS, Lee HK, Brown MT (2008) Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat Toxicol 86:176–184CrossRefGoogle Scholar
  10. Han T, Kong J-A, Brown MT (2009) Aquatic toxicity tests of Ulva pertusa Kjellman (ulvales, chlorophyta) using spore germination and gametophyte growth. Eur J Phycol 44:357–363CrossRefGoogle Scholar
  11. Jacobson AH, Willingham GL (2000) Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci Total Environ 258:103–110CrossRefGoogle Scholar
  12. Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol 109:445–454Google Scholar
  13. Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440CrossRefGoogle Scholar
  14. Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154CrossRefGoogle Scholar
  15. Martínez K, Ferrer I, Barceló D (2000) Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 879:27–37CrossRefGoogle Scholar
  16. Mukherjee A, Mohan Rao KV, Ramesh US (2009) Predicted concentrations of biocides from antifouling paints in Visakhapatnam harbour. J Environ Manag 90:S51–S59CrossRefGoogle Scholar
  17. Myers JH, Gunthorpe L, Allinson G, Duda S (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine. Mar Pollut Bull 52:1048–1055CrossRefGoogle Scholar
  18. Ndungu K (2012) Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry. Environ Sci Technol 46:7644–7652CrossRefGoogle Scholar
  19. Ohlauson C, Eriksson KM, Blanck H (2012) Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations. Biofouling 28:491–499CrossRefGoogle Scholar
  20. Okamura H, Kitano S, Toyota S, Harino H, Thomas KV (2009) Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Chemosphere 74:1275–1278CrossRefGoogle Scholar
  21. Reed RH, Moffat L (1983) Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev. J Exp Mar Biol Ecol 69:85–103CrossRefGoogle Scholar
  22. Savola JM, Ruskoaho H, Puurunen J, Salonen JS, Kärki NT (1986) Evidence for medetomidine as a selective and potent agonist α2-adrenoreceptors. Auton Autacoid Pharmacol 6:275–284CrossRefGoogle Scholar
  23. Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best-fit method for concentration–response curves and the estimation of low-effect concentrations. Environ Toxicol Chem 20:448–457CrossRefGoogle Scholar
  24. Silkina A, Bazes A, Mouget J-L, Bourgougnon N (2012) Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. Mar Pollut Bull 64:2039–2046CrossRefGoogle Scholar
  25. Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SEM, Callow ME, Callow JA (2010) A preliminary study on the properties and fouling-release performance of siloxane–polyurethane coatings prepared from poly(dimethylsiloxane) (pdms) macromers. Biofouling 26:961–972CrossRefGoogle Scholar
  26. Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88CrossRefGoogle Scholar
  27. Van Alstyne K, Nelson A, Vyvyan J, Cancilla D (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148:304–311CrossRefGoogle Scholar
  28. Willingham G, Jacobson A (1993) Efficacy and environmental fate of a new isothiazolone antifoulant. In: Third Asia-Pacific conference of the paint research association, International Centre for Coatings Technology, Singapore, pp 14.11–14.13Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ida Wendt
    • 1
  • Åsa Arrhenius
    • 1
  • Thomas Backhaus
    • 1
  • Annelie Hilvarsson
    • 1
  • Kristina Holm
    • 1
  • Katherine Langford
    • 2
  • Timur Tunovic
    • 1
  • Hans Blanck
    • 1
  1. 1.Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Norwegian Institute for Water Research (NIVA)OsloNorway

Personalised recommendations