Mercury Toxicity to Freshwater Organisms: Extrapolation Using Species Sensitivity Distribution

  • Andreia C. M. Rodrigues
  • Fátima T. Jesus
  • Marco A. F. Fernandes
  • Fernando Morgado
  • Amadeu M. V. M. Soares
  • Sizenando N. Abreu
Article

Abstract

Mercury toxicity to aquatic organisms was evaluated in different taxonomic groups showing the following species sensitivity gradient: Daphnia magna > Daphnia longispina > Pseudokirchneriella subcapitata > Chlorella vulgaris > Lemna minor > Chironomus riparius. Toxicity values ranged from 3.49 μg/L (48 h-EC50 of D. magna) to 1.58 mg/L (48 h-EC50 of C. riparius). A species sensitivity distribution was used to estimate hazardous mercury concentration at 5 % level (HC5) and the predicted no effect concentration (PNEC). The HC5 was 3.18 μg Hg/L and the PNEC varied between 0.636 and 3.18 μg Hg/L, suggesting no risk of acute toxicity to algae, plants, crustaceans and insects in most freshwaters.

Keywords

Aquatic toxicity Mercury Species sensitivity distribution 

Notes

Acknowledgments

We thank João Pedrosa, Tânia Vidal and Abel Ferreira (Department of Biology of the University of Aveiro) for providing C. riparius, L. minor cultures and algae cultures, respectively. The Portuguese Foundation for Science and Technology (FCT) supported the Post-doctoral fellowship SFRH/BPD/45807/2008 and CAPES- FCT 240/09 and the doctoral fellowship SFRH/BD/27637/2006.

References

  1. Antunes SC, Castro BB, Gonçalves F (2003) Chronic responses of different clones of Daphnia longispina (field and ephippia) to different food levels. Acta Oecologica 24(Supplement 1):S325–S332CrossRefGoogle Scholar
  2. Azevedo-Pereira H, Soares A (2010) Effects of mercury on growth, emergence, and behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Arch Environ Contam Toxicol 59(2):216–224CrossRefGoogle Scholar
  3. Baird DJ, Barber I, Calow P (1990) Clonal variation in general responses of Daphnia magna Straus to toxic stress. 1. Chronic life-history effects. Funct Ecol 4(3):399–407CrossRefGoogle Scholar
  4. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351CrossRefGoogle Scholar
  5. Broussard LA, Hammett-Stabler CA, Winecker RE, Ropero-Miller JD (2002) The toxicology of mercury. Lab Med 33(8):614–625CrossRefGoogle Scholar
  6. Dirilgen N (2011) Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Saf 74(1):48–54CrossRefGoogle Scholar
  7. Domis LNS, Mooij WM, Hülsmann S, van Nes EH, Scheffer M (2007) Can overwintering versus diapausing strategy in Dapnhia determine match-mismatch events in zooplankton-algae interactions? Oecologia 150(4):682–698CrossRefGoogle Scholar
  8. Floyd P, Zarogiannis P, Crane M, Tarkowski S, Bencko V (2002) Risks to health and the environment related to the use of mercury products. RPA Technology forthe European Commission, DGEnterprise. http://ec.europa.eu/enterprise/chemicals/docs/studies/rpa-mercury.pdf
  9. Jonsson CM, Aoyama H (2009) Extraction, partial characterization and susceptibility to Hg2+ of acid phosphatase from the microalgae Pseudokirchneriella subcapitata. Scientia Agricola 66(5):634–642CrossRefGoogle Scholar
  10. Juneau P, Dewez D, Matsui S, Kim SG, Popovic R (2001) Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere 45(4):589–598CrossRefGoogle Scholar
  11. Khangarot B, Ray P (1987) Correlation between heavy metal acute toxicity values in Daphnia magna and fish. Bull Environ Contam Toxicol 38(4):722–726CrossRefGoogle Scholar
  12. Lin Y, Vogt R, Larssen T (2012) Environmental mercury in China: a review. Environ Toxicol Chem 31(11):2431–2444CrossRefGoogle Scholar
  13. Naumann B, Eberius M, Appenroth K-J (2007) Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164(12):1656–1664CrossRefGoogle Scholar
  14. OECD (2004) Guidelines for the testing of chemicals. Test No. 202: Daphnia sp., acute immobilisation test. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  15. OECD (2006a) OECD Guidelines for the testing of chemicals. Test N201: freshwater alga and cyanobacteria, growth inhibition test. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  16. OECD (2006b) OECD Guidelines for the testing of chemicals. Test N221: Lemna sp. growth inhibition test. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  17. OECD (2010) OECD Guideline for testing of chemicals—Chironomus sp., acute immobilisation test (Draft). Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  18. Rai L, Gaur J, Kumar H (1981) Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environ Res 25(2):250–259CrossRefGoogle Scholar
  19. Seda J, Petrusek A, Machacek J, Smilauer P (2007) Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. J Plankton Res 29(7):619–628Google Scholar
  20. USEPA (1985) Ambient water quality criteria for mercury. In: Office of Water—Regulations and Standard Criteria and Standards Division (ed.) Water. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andreia C. M. Rodrigues
    • 1
  • Fátima T. Jesus
    • 1
  • Marco A. F. Fernandes
    • 1
  • Fernando Morgado
    • 1
  • Amadeu M. V. M. Soares
    • 1
  • Sizenando N. Abreu
    • 1
  1. 1.Department of Biology and CESAMUniversity of AveiroAveiroPortugal

Personalised recommendations