A Linear Model to Predict Chronic Effects of Chemicals on Daphnia magna

  • Enrico MombelliEmail author
  • Alexandre R. R. Pery


Chronic toxicity data for Daphnia magna are information requirements in the context of regulations on chemical safety. This paper proposes a linear model for the prediction of chemically-induced effects on the reproductive output of D. magna. This model is based on data retrieved from the Japanese Ministry of Environment database and it predicts chronic effects as a function of acute toxicity data. The proposed model proved to be able to predict chronic toxicities for chemicals not used in the training set. Our results suggest that experiments involving chronic exposure to chemicals could be reduced thanks to the proposed model.


Daphnia magna Chronic toxicity Acute toxicity Predictive model OECD (Q)SAR Toolbox 



This work was supported by the National Research Agency (ANR) within the project AMORE (Contract number: 2009 CESA 15 01) and by the French Ministry in charge of Ecology and Sustainable Development, within the framework of Programmes 189 and 190.

Supplementary material

128_2011_393_MOESM1_ESM.doc (284 kb)
Supplementary material 1 (DOC 283 kb)


  1. Adema DM (1978) Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia 59:125–134CrossRefGoogle Scholar
  2. Dom N, Knapen D, Benoot D, Nobels I, Blust R (2010) Aquatic multi-species acute toxicity of (chlorinated) anilines: experimental versus predicted data. Chemosphere 81:177–186CrossRefGoogle Scholar
  3. EC (2006) Regulation No 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/EC and repealing council regulation (EEC) no 793/93 and commission regulation (EC) no 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, The European parliament and the council of the European union. Available at
  4. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aid Mol Des 7:241–253CrossRefGoogle Scholar
  5. Henegar A, Mombelli E, Pandard P, Pery ARR (2011) What can be learnt from an ecotoxicity database in the framework of the REACH regulation? Sci Total Environ 409:489–494CrossRefGoogle Scholar
  6. Hilal SH, Karickhoff SW, Carreira LA (1995) A rigorous test for SPARC’s chemical reactivity models: estimation of more than 4,300 ionization pK(a)s. Quant Struct Act Relat 14:348–355CrossRefGoogle Scholar
  7. Mackay D, Arnot JA, Petkova EP, Wallace KB, Call DJ, Brooke LT, Veith GD (2009) The physicochemical basis of QSARs for baseline toxicity. SAR QSAR Environ Res 20:393–414CrossRefGoogle Scholar
  8. MoE (2010) Japan ecotoxicity tests data (version dated March 2010). Available at
  9. Neuwoehner J, Zilberman T, Fenner K, Escher BI (2010) QSAR-analysis and mixture toxicity as diagnostic tools: influence of degradation on the toxicity and mode of action of diuron in algae and daphnids. Aquat Toxicol 97:58–67CrossRefGoogle Scholar
  10. OECD (1984) Daphnia sp. acute immobilisation test and reproduction test, part 1: 24 h EC50 acute immobilisation test available at
  11. OECD (1998) Daphnia magna reproduction test available at
  12. OECD (2010) OECD (Q)SAR application Toolbox. Software available from the OECD website,3343,en_2649_34379_42923638_1_1_1_1,00.html
  13. R Development Core Team (2010) R: a language and environment for statistical computing, Vienna, Austria. R Development Core Team, Vienna. Available at
  14. Ramos EU, Vaal MA, Hermens JLM (2002) Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ Toxicol Pharm 11:149–158CrossRefGoogle Scholar
  15. Santojanni A, Gorbi G, Sartore F (1998) Prediction of fecundity in chronic toxicity tests on Daphnia magna. Wat Res 32:3146–3156CrossRefGoogle Scholar
  16. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory: design and description. J Comput Aid Mol Des 19:453–463CrossRefGoogle Scholar
  17. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca RatonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Unité Modèles Pour l’Ecotoxicologie et la Toxicologie (METO)Institut National de l’Environnement Industriel et des Risques (INERIS)Verneuil en HalatteFrance

Personalised recommendations