Observation of Sward Destruction Caused by Irrigation with Toxic Microcystis Morphospecies Containing Water in Southern Hungary

Article

Abstract

In the summer of 2006 bloom-like phenomenon occurred in a garden pond in Szeged, Southern Hungary. After regular watering of a sward with pond water containing the algal mass, destruction of garden grass occurred. Microcystis aeruginosa, Microcystis viridis, Microcystis ichthyoblabe, and Microcystis wesenbergii were identified by light microscopy in the water sample; microcystin-FR, -LR, -RR and -YR were determined by matrix-assisted laser desorption/ionization—time-of-flight analysis. There was an 80% decrease in the green mass (87% in chlorophyll-content) of the grass in a 1 m2 area of the garden irrigated with pond water.

Keywords

Microcystis Irrigation Grass destruction Microcystins 

References

  1. Baskin T, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganise cortical microtubules. Plant Physiol 113:493–502CrossRefGoogle Scholar
  2. Bendall DS, Bowes JM, Stewart AC, Taylor ME (1988) Oxygen-evolving photosystem II particles from Phormidium laminosum. In: Packer L, Glazer AN (eds) Cyanobacteria, vol 167. Meth Enzymol Academic Press, San Diego, pp 272–280CrossRefGoogle Scholar
  3. Chen W, Song L, Dai J, Ganb N, Liu Z (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400CrossRefGoogle Scholar
  4. Chorus I, Bartam J (1999) Toxic cyanobacteria in water—A guide to their public health consequences, monitoring and management. E and FN Spon LondonGoogle Scholar
  5. Codd GA, Metcalf JS, Beattie KA (1999) Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185CrossRefGoogle Scholar
  6. Järvenpää S, Lundberg-Niinistö C, Spoofa L, Sjövall O, Tyystjärvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography–mass spectrometry. Toxicon 49:865–874CrossRefGoogle Scholar
  7. Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fischer, Jena, pp 1–548Google Scholar
  8. Kós P, Gorzó G, Surányi G, Borbély G (1995) Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba L.). Anal Biochem 225:49–53CrossRefGoogle Scholar
  9. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192CrossRefGoogle Scholar
  10. Máthé Cs, M-Hamvas M, Vasas G, Surányi Gy, Bácsi I, Beyer D, Tóth Sz, Tímár M, Borbély Gy (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis/Cav./Trin. Ex Steud.) plants regenerated from embryogenic calli. New Phytol 176:824–835CrossRefGoogle Scholar
  11. McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420CrossRefGoogle Scholar
  12. M-Hamvas M, Máthé Cs, Molnár E, Vasas G, Grigorszky I, Borbély Gy (2003) Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L. seedlings. Aquat Toxicol 62:1–9CrossRefGoogle Scholar
  13. Mitrovic SM, Allis O, Furey A, James KJ (2005) Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicol Environ Saf 61:345–352CrossRefGoogle Scholar
  14. Ouahid Y, Perez-Silva G, del Campo FF (2005) Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ Toxicol 20:235–242CrossRefGoogle Scholar
  15. Pereira S, Saker ML, Vale M, Vasconcelos VM (2009) Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bull Environ Contam Toxicol 83:81–84CrossRefGoogle Scholar
  16. Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413CrossRefGoogle Scholar
  17. Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) On the annual cycle of the blue-green-alga Microcystis aeruginosa Kutz Emend Elenkin. Philos Trans R Soc Lond B Biol Sci 293:419–477CrossRefGoogle Scholar
  18. Romanowska-Duda Z, Tarczynska M (2002) The influence of microcystin-LR and hepatotoxic cyanobacterial extract on the water plant Spirodela oligorrhiza. Environ Toxicol 17:434–440CrossRefGoogle Scholar
  19. Runnegar M, Berndt N, Kong SM, Lee EYC, Zhang LF (1995) In vivo and in vitro binding of microcystin to protein phosphatase-1 and phosphatase-2A. Biochem Biophys Res Com 216:162–169CrossRefGoogle Scholar
  20. Smith RD, Wilson JE, Walker JC, Baskin TI (1994) Protein-phosphatase inhibitors block root hair growth and alter cortical cell shape of arabidopsis roots. Planta 194:516–524CrossRefGoogle Scholar
  21. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-poliketide synthetase system. Chem Biol 7:753–764CrossRefGoogle Scholar
  22. Vasas G, Gáspar A, Surányi Gy, Batta Gy, Gyémánt Gy, M-Hamvas M, Máthé Cs, Grigorszky I, Molnár E, Borbély Gy (2002) Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue-green sinapis test). Anal Biochem 302:95–103CrossRefGoogle Scholar
  23. Visser PM, Ibelings BW, Mur LR, Walsby AE (2005) The ecophysiology of the harmful cyanobacterium Microcystis—features explaining its success and measures for its control. Aquatic Ecology Series 3, Springer, BerlinGoogle Scholar
  24. Weiss J, Liebert H-P, Braune W (2000) Influence of microcystin-RR on growth and photosynthetic capacity of the duckweed Lemna minor L. J Appl Bot 74:100–105Google Scholar
  25. Welker M, Šejnohová L, Némethová D, von Döhren H, Jarkovský J, Maršálek B (2007) Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr 52:609–619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of Sciences and Technology, Department of HidrobiologyUniversity of DebrecenDebrecenHungary
  2. 2.Faculty of Sciences and Technology, Department of BotanyUniversity of DebrecenDebrecenHungary
  3. 3.Faculty of Sciences and Technology, Department of BiochemistryUniversity of DebrecenDebrecenHungary

Personalised recommendations