Acute Toxicity of the Dissociating Veterinary Antibiotics Trimethoprim to Willow Trees at Varying pH

  • Ondrej Mikes
  • Stefan Trapp


The willow tree acute toxicity test was applied to determine the acute toxicity of the neutral and the ionic form of the antibiotic trimethoprim (TMP) to trees. The pKa of the weak base TMP is at 7.2, and the toxicity testing was done at low (pH 4.3), medium (pH 6.4) and high pH (pH 8.15). The test gave toxic effects, i.e. reduced transpiration at an external concentration of 100 mg/L TMP at medium and high pH, where the neutral form of TMP dominates. At an external concentration of 1,000 mg/L, also at low pH an effect occurred, but it was less pronounced than at medium pH.


Base Ion Pharmaceuticals Plants 



This work received financial support from the European Union 6th Framework Program of Research, Thematic Priority 6 (Global change and ecosystems), contract number GOCE 037017, project OSIRIS, and the FP 7 project PHARMAS. This study was also supported by the CETOCOEN (project CZ.1.05/2.1.00/01.0001) of the EU Structural Funds, Operational programme “Research and development of Innovations”.


  1. ACD Advanced Chemistry Development (2008) ACD/LogD Suite version 10.02. Toronto, ON, CanadaGoogle Scholar
  2. Boxall BAB, Fogg LA, Baird DJ, Lewis C, Telfer TC, Koplin D, Gravell A, Pemberton E, Boucard T (2005) Target monitoring study for veterinary medicines in the environment, science report: SC030183/SR. Environment agency, Bristol, United KingdomGoogle Scholar
  3. Capleton AC, Courage C, Rumsby P, Holmes P, Stutt E, Boxall ABA, Levy LS (2006) Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile. Toxicol Lett 163:213–223CrossRefGoogle Scholar
  4. CISTA Central Institute for Supervising and Testing in Agriculture in Czech Republic (2009) Výsledky agrochemického zkoušení zemědělských půd za období 2003–2008 Accessed 27 Sep 2010
  5. De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, van Hoot F (1974) Lysosomotropic agents. Biochem Pharmacol 23:2495–2531CrossRefGoogle Scholar
  6. Emborg HD, Hammerum AM (2007) Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. Accessed 27 Sep 2010
  7. EMEA (2007) Trimethoprim. Summary report (2) (EMEA/MRL/255/97-FINAL) Accessed 27 Sep 2010
  8. Halling-Sørensen B, Lutzhøft HCH, Andersen HR, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46:53–58CrossRefGoogle Scholar
  9. Holmes P, Boxall A, Johnson K, Assem L, Levy LS (2007) Evaluation of the potential risks to consumers from indirect exposure to veterinary medicines, Final report. Institute of Environmental and Health and the Central Science Laboratory for the Department for Environmental Food and Rural AffairsGoogle Scholar
  10. ISO (1997) Water quality – Fresh water algal growth test with Scenedesmus subspicatus and Raphidocelis subcapitata. In: ISO International Organization for Standardization, Geneve, SwitzerlandGoogle Scholar
  11. Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agri Ecosyst Environ 93:267–278CrossRefGoogle Scholar
  12. Kühne M, Ihnen D, Moller G, Agthe O (2000) Stability of tetracycline in water and liquid manure. J Vet Med A 47:379–384CrossRefGoogle Scholar
  13. Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39:2135–2142CrossRefGoogle Scholar
  14. Liu F, Ying G-G, Tao R, Zhao J-L, Yang J-F, Zhao L-F (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642CrossRefGoogle Scholar
  15. Manallack DT (2007) The pKa distribution of drugs: application to drug discovery. Perspect Med Chem 1:25–38Google Scholar
  16. Nielsen P (1975) Elimination of trimethoprim in swine: comparison of results obtained by three analytical methods. Acta Pharmacol Toxicol 37:309–316CrossRefGoogle Scholar
  17. Quinn B, Gagné F, Blaise C (2008) An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci Tot Environ 389:306–314CrossRefGoogle Scholar
  18. Seeger E, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sed 9:46–53CrossRefGoogle Scholar
  19. Spaepen KRI, Van Leemput LJJ, Wislocki PG, Verschueren C (1997) A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Environ Toxicol Chem 16:1977–1982CrossRefGoogle Scholar
  20. Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39CrossRefGoogle Scholar
  21. Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A Phytotoxicity Test Using Transpiration of Willows. Arch Environ Contam Toxicol 39:154–160CrossRefGoogle Scholar
  22. Trapp S, Ciucani G, Sismilich M (2004) Toxicity of tributyltin to willow trees. Environ Sci Pollut Res 11:327–330CrossRefGoogle Scholar
  23. Trapp S, Rosania GR, Horobin RW, Kornhuber J (2008) Quantitative modeling of selective lysosomal targeting for drug design. Eur Biophys J Biophy 37:1317–1328CrossRefGoogle Scholar
  24. Ucisik AS, Trapp S (2006) Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees(Salix viminalis). Environ Toxicol Chem 25:2455–2460CrossRefGoogle Scholar
  25. Ucisik AS, Trapp S (2008) Uptake, accumulation, phytotoxicity and removal of 4-chlorophenol in willow trees. Arch Environ Contam Toxicol 54:619–627CrossRefGoogle Scholar
  26. Ucisik AS, Trapp S, Kusk KO (2007) Uptake, accumulation, phytotoxicity, and removal of 2, 4-dichlorophenol in willow trees. Environ Toxicol Chem 26:1165–1171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment, RECETOXBrnoCzech Republic
  2. 2.Department of Environmental EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations