Presence of Polycyclic Aromatic Hydrocarbons (PAHs) in Apple in Rural Terrains from Mexico City

  • Rutilio Ortiz Salinas
  • Gilberto Díaz González
  • Beatriz Schettino Bermudez
  • Rey Gutiérrez Tolentino
  • Salvador Vega y León


This paper describes PAH concentrations in apple crops that are growing in rural terrains in Mexico City. The concentrations of individual PAHs showed great variability, there being low and high molecular weight compounds in dry (high molecular weight for Tlahuac 7.06 μg/g and Milpa Alta 3.96 μg/g) and wet months (high molecular weight for Tlahuac 11.25 μg/g and Milpa Alta 12.05 μg/g). Some PAHs indicators and cross plot ratios Ant/(Ant + Phe) and Flu/(Flu + Pyr) define fossil fuels and vegetation combustion as the source of contamination over the cuticle of the apples. It is likely that deposition (dry and wet) is the principal source o f contamination over the apple surface. This study reveals the presence of PAHs in apples due to the high air contamination of Mexico City.


Contamination Deposition PAHs 



This work was supported by the Metropolitan Autonomous University “Xochimilco” Campus. We also thank Eduardo Villegas for his part in sample treatment in the laboratory.


  1. Barra R, Castillo C, Machado JP (2007) Polycyclic aromatic hydrocarbons in the South American environment. Rev Environ Contam Toxicol 191:1–22CrossRefGoogle Scholar
  2. Bishnoi NR, Mehta U, Sain U, Pandit GG (2005) Quantification of polycyclic aromatic hydrocarbons in tea and coffee samples of Mumbai city (India) by high performance liquid chromatography. Environ Monit Assess 107:399–406CrossRefGoogle Scholar
  3. Cai QY, Mo CH, Li YH, Zeng QY, Katsoyiannis A, Wu QT, Férard JF (2007) Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetables fields of the Pearl River delta, south China. Chemosphere 68:159–168CrossRefGoogle Scholar
  4. Chung NJ, Cho JY, Park SW, Hwang SA, Park TL (2008) Polycyclic aromatic hydrocarbons in soils and crops after irrigation of wastewater discharged from domestic sewage treatment plants. Bull Environ Contam Toxicol 81:124–127CrossRefGoogle Scholar
  5. Escobedo JF, Victoria AR, Ramírez A (2000) La problemática ambiental en la Ciudad de México generada por las fuentes fijas. Secretaría del Medio Ambiente p 14Google Scholar
  6. GDF (2003) Programa general de ordenamiento ecológico del distrito federal. Available via Accessed 12 Feb 2008
  7. Grupo Produce DF (2006) Aportes en marcha. Available via Accessed 10 Aug 2008
  8. Jánská M, Hajslová J, Tomaniová M, Kocourek V, Vávrova M (2006) Polycyclic aromatic hydrocarbons in fruits and vegetables grown in the Czech Republic. Bull Environ Contam Toxicol 77:492–499CrossRefGoogle Scholar
  9. Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380CrossRefGoogle Scholar
  10. Li YT, Li FB, Chen JJ, Yang GY, Wari HF, Zhang TB, Zeng XD, Liu JM (2007) The concentrations, distribution and sources of PAHs in agricultural soils and vegetables from Shunde, Guandong, China. Environ Monit Assess. doi: 10.1007/s10661-007-9816-x
  11. Ma YG, Cheng JP, Jiao F, Duo KX, Rong Z, Li M, Wong WH (2008) Distribution sources and potential risk of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources from Henan Province in middle of China. Environ Monit Assess 146:127–138CrossRefGoogle Scholar
  12. Marr LC, Grogan LA, Wohrnschimmel H, Molina LT, Molina M, Smith TJ, Garshick E (2004) Vehicle traffic as a source of particulate polycyclic aromatic hydrocarbon exposure in the Mexico City metropolitan area. Environ Sci Technol 38:2584–2592CrossRefGoogle Scholar
  13. Martens D, Maguhn J, Spitzauer P, Kettrup A (1997) Occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in an agricultural ecosystem. Fresenius J Anal Chem 359:546–554CrossRefGoogle Scholar
  14. Mo CH, Cai QY, Tang SR, Zeng QY, Wu QT (2009) Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch Environ Contam Toxicol 56:181–189CrossRefGoogle Scholar
  15. Pimentel D, Huang X, Cordova A, Pimentel M (1997) Impact of population growth on food supplies and environment. Pop Environ 19(1):9–14CrossRefGoogle Scholar
  16. Rojo MC, Toledo MCF (2003) Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14:49–53CrossRefGoogle Scholar
  17. Samsoe LP, Larsen EH, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063CrossRefGoogle Scholar
  18. Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmit G, Wang XJ, Shen WR, Qing BP, Sun R (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24CrossRefGoogle Scholar
  19. Zohair A, Salim AB, Soyibo AA, Beck AJ (2006) Residues of polycyclic hydrocarbons (PAHs), polychlorinated (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere 63:541–553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rutilio Ortiz Salinas
    • 1
  • Gilberto Díaz González
    • 1
  • Beatriz Schettino Bermudez
    • 1
  • Rey Gutiérrez Tolentino
    • 1
  • Salvador Vega y León
    • 1
  1. 1.Laboratorio de Análisis Instrumental, Departamento de Producción Agrícola y AnimalUniversidad Autónoma Metropolitana Unidad XochimilcoCoyoacán, México D.F.Mexico

Personalised recommendations