Skip to main content
Log in

Volatile Organic Compounds in a Residential and Commercial Urban Area with a Diesel, Compressed Natural Gas and Oxygenated Gasoline Vehicular Fleet

Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3–C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barletta B, Meinardi S, Simpson IJ, Khwaja HA, Blake DR, Rowland FS (2002) Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmos Environ 36:3429–3443

    Article  CAS  Google Scholar 

  • Barletta B, Meinardi S, Rowland FS, Chan CY, Wang X, Zou S, Chan LY, Blake DR (2005) Volatile organic compounds in 43 Chinese cities. Atmos Environ 39:5979–5990

    Article  CAS  Google Scholar 

  • Blake DR, Rowland FS (1995) Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality. Science 269:953–956

    Article  CAS  Google Scholar 

  • Carter WPL (1990) A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos Environ 24A:481–516

    CAS  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manag Assoc 44:881–899

    CAS  Google Scholar 

  • Chan CY, Chan LY, Wang XM, Liu YM, Lee SC, Zou SC, Sheng GY, Fu JM (2002) Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. Atmos Environ 36:2039–2047

    Article  CAS  Google Scholar 

  • Chan LY, Lau WL, Wang WM, Tang JH (2003) Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. Environ Int 29:429–435

    Article  CAS  Google Scholar 

  • Chen TY, Simpson IJ, Blake DR, Rowland FS (2001) Impact of the leakage of liquefied petroleum gas (LPG) on Santiago air quality. Geophys Res Lett 28:2193–2196

    Article  CAS  Google Scholar 

  • Corrêa SM, Arbilla G (2005) Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles. Atmos Environ 39:4513–4518

    Article  Google Scholar 

  • Derwent RG, Jenkin ME, Passant NR, Pilling MJ (2007) Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated by a Master Chemical Mechanism. Atmos Environ 41:2570–2579

    Article  CAS  Google Scholar 

  • DETRAN (2008) http://www.detran.rj.gov.br/. Accessed January 2008

  • FEEMA (2007) http://www.feema.rj.gov.br/. Accessed December 2007

  • Finlaysson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Theory, experiments and applications. Academic Press, San Diego

    Google Scholar 

  • Gatti LV, Martins LD, Andrade MF, Freitas E, Pretto A, Albuquerque LMM (2006) Emission factors of gaseous motor vehicle inside road tunnels in São Paulo City. Environ Sci Technol 40:6722–6729

    Article  Google Scholar 

  • Grosjean E, Grosjean D, Gunawardena R, Rasmunsen RA (1998a) Ambient levels of ethanol and methyl-tert-butyl ether in Porto Alegre, Brazil. Environ Sci Technol 32:736–742

    Article  CAS  Google Scholar 

  • Grosjean E, Rasmussen RA, Grosjean D (1998b) Ambient levels of gas phase pollutants in Porto Alegre, Brazil. Atmos Environ 32:3371–3379

    Article  CAS  Google Scholar 

  • Guo H, So KL, Simpson IJ, Barletta B, Meinardi S, Blake DR (2007) C1–C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processes and source apportionment. Atmos Environ 41:1456–1472

    Article  CAS  Google Scholar 

  • Jo WK, Song KB (2001) Exposure to volatile organic compounds for individuals with occupations associated with potential exposure to motor vehicle exhaust and/or gasoline vapor emissions. Sci Total Environ 269:25–37

    Article  CAS  Google Scholar 

  • Martins EM, Arbilla G, Bauerfeldt GF, de Paula M (2007) Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area. Chemosphere 67:2096–2103

    Article  CAS  Google Scholar 

  • Mayrsohn H, Crabtree JH (1976) Source reconciliation of atmospheric hydrocarbons. Atmos Environ 10:137–143

    Article  CAS  Google Scholar 

  • Miguel AH (1991) Environmental pollution research in South America. Environ Sci Technol 25:590–594

    Article  Google Scholar 

  • Na K, Kim YP, Moon KC (2003) Diurnal characteristics of volatile organic compounds in the Seoul atmosphere. Atmos Environ 37:733–742

    Article  CAS  Google Scholar 

  • Qin Y, Walk T, Gary R, Yao X, Elles S (2007) C2–C10 nonmethane hydrocarbons measured in Dallas, USA—seasonal trends and diurnal characteristics. Atmos Environ 41:6018–6032

    Article  CAS  Google Scholar 

  • Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quimica Nova 27:771–780

    CAS  Google Scholar 

  • Sharma UK, Kajii Y, Akimoto H (2000) Characterization of NMHCs in downtown urban center Kathmandu and rural site in Nagarkot in Nepal. Atmos Environ 34:3297–3307

    Article  CAS  Google Scholar 

  • U.S. EPA Compendium TO-14 Method (1997) Determination of Volatile Organic Compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography, Center for Environmental Research Information. U.S. Environmental Protection Agency, Washington, DC

  • Vivanco MG, Andrade MF (2006) Validation of the emission inventory in the Sao Paulo Metropolitan Area of Brazil, based on ambient concentrations ratios of CO, NMOG and NOx and on a photochemical model. Atmos Environ 40:1189–1198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by CNPq, FAPERJ and Capes. We thank Secretaria Municipal de Meio Ambiente for permission to collect the samples at the monitoring station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Arbilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, E.M., Arbilla, G. & Gatti, L.V. Volatile Organic Compounds in a Residential and Commercial Urban Area with a Diesel, Compressed Natural Gas and Oxygenated Gasoline Vehicular Fleet. Bull Environ Contam Toxicol 84, 175–179 (2010). https://doi.org/10.1007/s00128-009-9886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9886-2

Keywords

Navigation