Advertisement

Selective Bactericidal Potential of Rice (Oryza sativa L. var. japonica) Hull Extract on Microcystis Strains in Comparison with Green Algae and Zooplankton

  • Myung-Hwan Park
  • Baik-Ho Kim
  • Ill-Min Chung
  • Soon-Jin Hwang
Article

Abstract

We examined the selective inhibitory potential of rice hull extract on the toxic cyanobacterium Microcystis aeruginosa, in comparison with inhibitory effects on two green algae (Ankistrodesmus convolutus and Scenedesmus quadricauda) and a zooplankton (Daphnia magna) species. The inhibitory effect of rice hull extract, measured by algal growth or zooplankton survival using four different concentrations of extract (1, 10, 100 and 1000 μg L−1), was highest on Microcystis strains (average: 98%, range: 95%–99%), followed by D. magna (average: 22%, range: 10%–47%), A. convolutus (average: 20%, range: 16%–24%), and S. quadricauda (average: 8%, range: 0%–15%). Rice hull extract had only a small effect on the growth of the green algae and Daphnia, particularly in the range 1–100 μg L−1, and the inhibitory effect was somewhat diminished even at the 1,000 μg L−1 level, at the end of the experimental period, especially for Daphnia. Our study indicates that rice hull extract has a strong specific algicide potential when used to combat M. aeruginosa.

Keywords

Rice hull extract Selective control Microcystis aeruginosa Green alga Zooplankton 

Notes

Acknowledgments

This work was supported by the Korean Ministry of Environment as “The Eco-technopia 21 project” (2007-06003-0020-1), and by the Korea Research Foundation Grant (KRF-2006- 351- D00026).

References

  1. Allen MM (1968) Simple conditions for the growth of unicellular blue-green algae on plates. J Phycol 4:1–4. doi: 10.1111/j.1529-8817.1968.tb04667.x CrossRefGoogle Scholar
  2. Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Human Ecol Risk Assess 7:1393–1407CrossRefGoogle Scholar
  3. Chung IM, Kim KH, Ahn JK, Chun SC, Kim CS, Kim JT, Kim SH (2002) Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts. Crop Prot 21:913–920. doi: 10.1016/S0261-2194(02)00063-7 CrossRefGoogle Scholar
  4. Chung IM, Ali M, Ahmad A, Chun SC, Kim JT, Sultana S, Kim JS, Min SK, Seo BR (2007) Steroidal constituents of rice (Oryza sativa) hulls with algicidal and herbicidal activity against blue-green algae and duckweed. Phytochem Anal 18:133–145. doi: 10.1002/pca.961 CrossRefGoogle Scholar
  5. Cooke GD, Welch EB, Peterson SA, Nichols SA (2005) Restoration and management of lakes and reservoirs, 3rd edn. CRC, Taylor & Francis, Boca Raton 591 ppGoogle Scholar
  6. Everall NC, Lees DR (1997) The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Res 31:614–620. doi: 10.1016/S0043-1354(96)00291-6 CrossRefGoogle Scholar
  7. Ferrier MD, Butler BR Sr, Terlizzi DE, Lacouture RV (2005) The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresour Technol 96:1788–1795. doi: 10.1016/j.biortech.2005.01.021 CrossRefGoogle Scholar
  8. Jančula D, Suchomelová J, Gregor J, Smutná M, Maršálek B, Táborská E (2007) Effects of aqueous extracts from five species of the family Papaveraceae on selected aquatic organisms. Environ Toxicol 22:480–486. doi: 10.1002/tox.20290 CrossRefGoogle Scholar
  9. Jang MH, Ha K, Lucas MC, Joo GJ, Takamura N (2003) Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshw Biol 48:1540–1550. doi: 10.1046/j.1365-2427.2003.01107.x CrossRefGoogle Scholar
  10. Kim JS, Kim JC, Lee S, Lee BH, Cho KY (2006) Biological activity of L-2-azetidinecarboxylic acid, isolated from Polygonatum odoratum var. pluriflorum, against several algae. Aquat Bot 85:1–6. doi: 10.1016/j.aquabot.2006.01.003 CrossRefGoogle Scholar
  11. Körner S, Nicklisch A (2002) Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38:862–871. doi: 10.1046/j.1529-8817.2002.t01-1-02001.x CrossRefGoogle Scholar
  12. Lürling M (2006) Effects of a surfactant (FFD-6) on Scenedesmus morphology and growth under different nutrient conditions. Chemosphere 62:1351–1358. doi: 10.1016/j.chemosphere.2005.07.031 CrossRefGoogle Scholar
  13. Men YJ, Hu HY, Li FM (2007) Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis Trin) on the growth of several common species of green algae. J Appl Phycol 19:521–527. doi: 10.1007/s10811-007-9165-8 CrossRefGoogle Scholar
  14. Nakai S, Inoue Y, Hosomi M, Murakami A (2000) Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res 34:3026–3032. doi: 10.1016/S0043-1354(00)00039-7 CrossRefGoogle Scholar
  15. Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 149–194Google Scholar
  16. Park MH, Han MS, Ahn CY, Kim HS, Yoon BD, Oh HM (2006a) Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett Appl Microbiol 43:307–312. doi: 10.1111/j.1472-765X.2006.01951.x CrossRefGoogle Scholar
  17. Park MH, Hwang SJ, Ahn CY, Kim BH, Oh HM (2006b) Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kütz. em. Elenkin. Bull Environ Contam Toxicol 77:9–14. doi: 10.1007/s00128-006-1025-8 CrossRefGoogle Scholar
  18. Park MH, Chung IM, Ahmad A, Kim BH, Hwang SJ (2009) Growth inhibition of unicellular and colonial Microcystis strains (Cyanophyceae) by compounds isolated from rice (Oryza sativa) hulls. Aquat Bot 90:309–314. doi: 10.1016/j.aquabot.2008.11.007 CrossRefGoogle Scholar
  19. Pillinger JM, Cooper JA, Ridge I (1994) Role of phenolic compounds in the antialgal activity of barley straw. J Chem Ecol 20:1557–1569. doi: 10.1007/BF02059880 CrossRefGoogle Scholar
  20. Pillinger JM, Gilmour I, Ridge I (1995) Comparison of antialgal activity brown-rotted and white-rotted wood and in situ analysis of lignin. J Chem Ecol 21:1113–1125. doi: 10.1007/BF02228315 CrossRefGoogle Scholar
  21. Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051. doi: 10.1023/A:1021367304315 CrossRefGoogle Scholar
  22. Shirai M, Matumaru K, Ohotake A, Takamura Y, Aida T, Nakano M (1989) Development of a solid medium for growth and isolation of axenic Microcystis strains (cyanobacteria). Appl Environ Microbiol 55:2569–2571Google Scholar
  23. van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274. doi: 10.1016/S0304-3770(01)00205-4 CrossRefGoogle Scholar
  24. Welch IM, Barrett PRF, Gibson MT, Ridge I (1990) Barley straw as an inhibitor of algal growth I: studies in the Chesterfield Canal. J Appl Phycol 2:231–239. doi: 10.1007/BF02179780 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Myung-Hwan Park
    • 1
  • Baik-Ho Kim
    • 1
  • Ill-Min Chung
    • 2
  • Soon-Jin Hwang
    • 1
  1. 1.Department of Environmental ScienceKonkuk UniversitySeoulKorea
  2. 2.Department of Applied Life ScienceKonkuk UniversitySeoulKorea

Personalised recommendations