Cadmium and Other Metal Uptake by Lobelia chinensis and Solanum nigrum from Contaminated Soils

  • K. J. Peng
  • C. L. Luo
  • Y. H. Chen
  • G. P. Wang
  • X. D. Li
  • Z. G. ShenEmail author


Cadmium concentrations in two plant species and their corresponding soils were evaluated in a metal contaminated area. The average Cd concentrations reached 36.9 and 141 mg kg−1 in Solanum nigrum leaves and Lobelia chinensis shoots, respectively. There is a significant relationship between the Cd concentration in the aerial tissues and the corresponding soils on a logarithmic scale. Under the hydroponic culture conditions, the maximum Cd concentration in the S. nigrum leaves and L. chinensis shoots were 1,110 and 414 mg kg−1, respectively. Cd concentration was higher in the roots than in the aerial parts. The two plants may be used in suitable phytoremediation process.


Cadmium Accumulation Plant Phytoextraction Contaminated soil 



The project was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE and a postdoctoral Research Fellowship from The Hong Kong Polytechnic University (G-YX88).


  1. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  2. Bert V, Bonnin I, Saumitou-Laprade P, de Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57. doi: 10.1046/j.1469-8137.2002.00432.x CrossRefGoogle Scholar
  3. Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252. doi: 10.1023/A:1026113905129 CrossRefGoogle Scholar
  4. de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168. doi: 10.1016/j.chemosphere.2004.01.028 CrossRefGoogle Scholar
  5. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  6. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Celluar compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84. doi: 10.1007/s004250000366 CrossRefGoogle Scholar
  7. Liu W, Shu WS, Lan CY (2003) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32Google Scholar
  8. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in population of Thlspi caerulescens and Thlspi goedingense. New Phytol 145:11–20. doi: 10.1046/j.1469-8137.2000.00560.x CrossRefGoogle Scholar
  9. Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2008) Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ Pollut 151:608–620. doi: 10.1016/j.envpol.2007.03.015 CrossRefGoogle Scholar
  10. McGrath SP (1998) Phytoextraction for soil remediation. In: Brook RR (ed) Plants that hyperaccumulate heavy metal. CAB International, Wallingford, pp 216–287Google Scholar
  11. Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Mingerals Eng 13:549–561. doi: 10.1016/S0892-6875(00)00035-2 CrossRefGoogle Scholar
  12. Peng KJ, Li XD, Luo CL, Shen ZG (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J Environ Sci Health A 41:65–75CrossRefGoogle Scholar
  13. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol 49:643–648. doi: 10.1146/annurev.arplant.49.1.643 CrossRefGoogle Scholar
  14. Shen ZG, Li XD, Chen HM, Wang CC, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900CrossRefGoogle Scholar
  15. Sun RL, Zhou QX, Jin CX (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134. doi: 10.1007/s11104-006-0064-6 CrossRefGoogle Scholar
  16. Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL, Ma LQY (2005) A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bull 50:33–39. doi: 10.1360/982004-292 CrossRefGoogle Scholar
  17. Wenzel WW, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ Pollut 104:145–155. doi: 10.1016/S0269-7491(98)00139-0 CrossRefGoogle Scholar
  18. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. doi: 10.1023/A:1022530217289 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. J. Peng
    • 1
  • C. L. Luo
    • 2
  • Y. H. Chen
    • 3
  • G. P. Wang
    • 3
  • X. D. Li
    • 2
  • Z. G. Shen
    • 3
    Email author
  1. 1.Hunan Research Academy of Environmental SciencesChangshaChina
  2. 2.Department of Civil and Structural EngineeringThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong
  3. 3.College of Life SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations