Efficiency of Experimental Rice (Oryza sativa L.) Fields in Mitigating Diazinon Runoff Toxicity to Hyalella azteca

  • Matthew T. Moore
  • Richard E. LizotteJr
  • Robert Kröger
Article

Abstract

This study assessed the viability of using planted, mature rice fields in mitigating diazinon (an organophosphate insecticide) runoff toxicity using aqueous 48 h Hyalella azteca whole effluent toxicity bioassays. Rice fields decreased diazinon concentrations 80.1%–99.9% compared with 10.8% in the unvegetated field control. H. azteca survival responses coincided with observed diazinon concentrations. Estimated LC50 effects dilutions (%) ranged from 1.15 to 1.47 for inflow samples and 1.66 (unvegetated), 6.44 (rice field A), and >100 (rice field B) outflow samples. Decreases in inflow versus outflow aqueous toxicity were 77.1%–100% in rice fields compared with 18.7% in the unvegetated field.

Keywords

Wetlands Organophosphate toxicity Hyalella azteca 

Notes

Acknowledgments

The authors would like to thank Sammie Smith, Charlie Cooper, Sam Testa, Calvin Vick, Tim Sullivan, James Hill, and Lisa Brooks for technical and analytical assistance. Mention of equipment, software or pesticide does not constitute an endorsement for use by the US Department of Agriculture nor does it imply pesticide registration under FIFRA as amended. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.

References

  1. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DCGoogle Scholar
  2. Bouldin JL, Farris JL, Moore MT, Smith S, Cooper CM (2007) Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory toxicity testing. Arch Environ Contam Toxicol 53:174–182. doi: 10.1007/s00244-006-0180-6 CrossRefGoogle Scholar
  3. Brown DL, Giles DK, Oliver MN, Klassen P (2008) Targeted spray technology to reduce pesticide in runoff from dormant orchards. Crop Prot 27:545–552. doi: 10.1016/j.cropro.2007.08.012 CrossRefGoogle Scholar
  4. Burkepile DE, Moore MT, Holland MM (2000) Susceptibility of five nontarget organisms to aqueous diazinon exposure. Bull Environ Contam Toxicol 64:114–121. doi: 10.1007/s001289910018 CrossRefGoogle Scholar
  5. Collyard SA, Ankley GT, Hoke RA, Goldenstein T (1994) Influence of age on the relative sensitivity of Hyalella azteca to diazinon, alkylphenol ethoxylates, copper, cadmium, and zinc. Arch Environ Contam Toxicol 26:110–113. doi: 10.1007/BF00212801 CrossRefGoogle Scholar
  6. de March BGE (1981) Hyalella azteca (Saussure). In: Lawrence SG (ed) Manual for the culture of selected freshwater invertebrates. Can Spec Publ Fish Aquat Sci 54:61–77Google Scholar
  7. Gealy DR, Mitten DH, Rutger JN (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Tech 17:627–645. doi: 10.1614/WT02-100 CrossRefGoogle Scholar
  8. Hunt J, Anderson B, Phillips B, Tjeerdema R, Largay B, Beretti M, Bern A (2008) Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems. Environ Pollut 156(2):348–358. doi: 10.1016j.envpol.2008.02.004 Google Scholar
  9. Moore MT, Cooper CM, Smith S, Cullum RF, Knight SS, Locke MA, Bennett ER (2007) Diazinon mitigation in constructed wetlands: influence of vegetation. Water Air Soil Pollut 184:313–321. doi: 10.1007/s11270-007-9418-9 CrossRefGoogle Scholar
  10. Rose MT, Sanchez-Bayo F, Crossan AN, Kennedy IR (2006) Pesticide removal from cotton farm tailwater by a pilot-scale ponded wetland. Chemosphere 63:1849–1858. doi: 10.1016/j.chemosphere.2005.10.024 CrossRefGoogle Scholar
  11. Smith S, Cooper CM, Lizotte RE, Locke MA, Knight SS (2007) Pesticides in lake water in the Beasley Lake watershed, 1998–2005. Int J Ecol Environ Sci 33:61–71Google Scholar
  12. Statistical Package for the Social Sciences (SPSS) Inc. (1997) SigmaStat for Windows version 2.03Google Scholar
  13. Suhling F, Befeld S, Häusler M, Katzur K, Lepkojus S, Mesléard F (2000) Effects of insecticide applications on macroinvertebrate density and biomass in rice-fields in the Rhône-delta, France. Hydrobiologia 431:69–79. doi: 10.1023/A:1004006422334 CrossRefGoogle Scholar
  14. US Department of Agriculture (USDA) National Agricultural Statistical Service (NASS) (2006) Agricultural chemical use database. http://www.pestmanagement.info/nass/act_dsp_statcs2_state.cfm
  15. US Environmental Protection Agency (USEPA) (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064 Washington, DCGoogle Scholar
  16. US Environmental Protection Agency (USEPA) (2002) Methods for measuring the acute toxicity of effluents and receiving waters with freshwater and marine organisms. EPA 821/R-02/012 Washington, DCGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Matthew T. Moore
    • 1
  • Richard E. LizotteJr
    • 1
  • Robert Kröger
    • 2
    • 3
  1. 1.USDA-ARS National Sedimentation LaboratoryOxfordUSA
  2. 2.Center for Water and Wetland ResourcesThe University of Mississippi Field StationAbbevilleUSA
  3. 3.Department of Wildlife and FisheriesMississippi State UniversityMississippi StateUSA

Personalised recommendations