Heavy Metals in the Surface Sediments in Lanzhou Reach of Yellow River, China

  • Changbing Liu
  • Jian XuEmail author
  • Chunguang Liu
  • Ping Zhang
  • Mingxin Dai


The heavy metal pollution and their fractionations in the surface sediments of Yellow River in Lanzhou Reach was monitored for arsenic (As), lead (Pb), Zinc (Zn), chromium (Cr), copper (Cu) and manganese (Mn) with Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The mean sediment concentrations (in μg/g dry weight) ranged from 13.68–48.11 (As), 26.39–77.66 (Pb), 89.80–201.88 (Zn), 41.49–128.30 (Cr), 29.72–102.22 (Cu), and 773.23–1459.69 (Mn). Spatial distribution showed that each heavy metal concentration remained almost constant in this reach. Correlation coefficients indicated that metals were not strongly associated with sediment sand content or organic carbon content (foc). Labile fractions (exchangeable + carbonate + Fe–Mn oxide) had no significant correlations with sand content or foc, either. Results from the present study are useful for understanding heavy metal distributions in a torrential river sediment environment.


Heavy metals Speciation Sediment Distribution 


  1. Conrad CF, Chisholm-Brause CJ (2004) Spatial survey of trace metal contaminants in the sediment of the Elizabeth River, Virginia. Mar Pollut Bull 49:319–324. doi: 10.1016/j.marpolbul.2004.02.019 CrossRefGoogle Scholar
  2. Jain CK, Sharma MK (2001) Distribution of trace metals in the Hindon River system, India. J Hydrol 253:81–90. doi: 10.1016/S0022-1694(01)00484-X CrossRefGoogle Scholar
  3. Jain CK, Singhal DC, Sharma MK (2005) Metal pollution assessment of sediment and water in the river Hindon, India. Environ Monit Assess 105:193–207. doi: 10.1007/s10661-005-3498-z CrossRefGoogle Scholar
  4. Jeon BH, Dempsey BA, Burgos WD, Royer RA (2003) Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hermatite. Water Res 37:4135–4142. doi: 10.1016/S0043-1354(03)00342-7 CrossRefGoogle Scholar
  5. Jones B, Turki A (1997) Distribution and speciation of heavy metals in surficial sediments from the Tees Estuary, north-east England. Mar Pollut Bull 34:768–779. doi: 10.1016/S0025-326X(97)00047-7 CrossRefGoogle Scholar
  6. Kersten M, Forstner U (1986) Chemical fraction of heavy metals in anoxic estuarine and coastal sediments. Water Sci Technol 18:121–130Google Scholar
  7. Krumlgalz BS (1989) Unusual grain size effect on trace metals and organic matter in contaminated sediments. Mar Pollut Bull 20:608–611. doi: 10.1016/0025-326X(89)90397-4 CrossRefGoogle Scholar
  8. Kwon YT, Lee CW (2001) Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation. Microchem J 70:255–264. doi: 10.1016/S0026-265X(01)00122-9 CrossRefGoogle Scholar
  9. Ochieng EZ, Lalah JO, Wandiga SO (2007) Analysis of heavy metals in water and surface sediment in five Rift Valley Lakes in Kenya for assessment of recent increase in anthropogenic activities. Bull Environ Contam Toxicol 79:570–576. doi: 10.1007/s00128-007-9286-4 CrossRefGoogle Scholar
  10. Ramos L, Hernandez LM, Gonzalez MJ (1994) Sequential fractionation of copper, lead, cadmium and zinc in soil from or near Donana National Park. J Environ Qual 23:50–57CrossRefGoogle Scholar
  11. Schmitt D, Saravia F, Frimmel FH, Schuessler W (2003) NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Res 37:3541–3550. doi: 10.1016/S0043-1354(01)00525-5 CrossRefGoogle Scholar
  12. Taylor MP (1996) The variability of heavy metals in floodplain sediments: a case study from mid Wales. Catena 28:71–87. doi: 10.1016/S0341-8162(96)00026-4 CrossRefGoogle Scholar
  13. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate metals. Anal Chem 51:844–851. doi: 10.1021/ac50043a017 CrossRefGoogle Scholar
  14. Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51:135–151. doi: 10.1080/03067319308027619 CrossRefGoogle Scholar
  15. Xu J, Wang P, Guo WF, Dong JX, Wang L, Dai SG (2006) Seasonal and spatial distribution of nonylphenol in the Lanzhou Reach of Yellow River in China. Chemosphere 65:1445–1451. doi: 10.1016/j.chemosphere.2006.04.042 CrossRefGoogle Scholar
  16. Xu J, Yu Y, Wang P, Dai SG, Sun HW (2007) Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere 67:1408–1414. doi: 10.1016/j.chemosphere.2006.10.074 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Changbing Liu
    • 1
  • Jian Xu
    • 2
    Email author
  • Chunguang Liu
    • 2
  • Ping Zhang
    • 2
  • Mingxin Dai
    • 1
  1. 1.Tianjin Research Institute of Water Transport EngineeringTianjinChina
  2. 2.College of Environmental Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations