The Tropical Brown Alga Lobophora variegata (Lamouroux) Womersley: A Prospective Bioindicator for Ag Contamination in Tropical Coastal Waters

  • Marc Metian
  • Michel WarnauEmail author


Uptake and depuration kinetics of dissolved silver were determined in the brown alga Lobophora variegata, using radiotracer techniques. Results indicate that this widely distributed alga could be a useful bioindicator species for surveying silver contamination in tropical environments. Indeed, results showed that the alga readily concentrates silver (algal concentration of silver was 7,000 times higher than in water after a 28-day exposure) and retains it efficiently within its tissues (biological half-life: 72 ± 4 days).


Silver Bioconcentration Coral reef ecosystems Biomonitoring 



The IAEA is grateful for the support provided to its Marine Environment Laboratories by the Government of the Principality of Monaco. Authors thank P. Bustamante (LIENSs) for constructive comments on the ms and J.L. Teyssié (IAEA-MEL) for technical assistance. MW is an Honorary Senior Research Associate of the National Fund for Scientific Research (NFSR, Belgium) and holds a 2008 Invited Expert position at LIENSs, supported by the Conseil Régional de Poitou-Charentes. This work was supported by the IAEA and the French PNEC Programme (Chantier Nouvelle-Calédonie).


  1. Boisson F, Hutchins DA, Fowler SW, Fisher NS, Teyssié J-L (1997) Influence of temperature on the accumulation and retention of 11 radionuclides by the marine alga Fucus vesiculosus (L.). Mar Pollut Bull 35:313–321. doi: 10.1016/S0025-326X(97)00092-1 CrossRefGoogle Scholar
  2. Cobbett C (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832. doi: 10.1104/pp.123.3.825 CrossRefGoogle Scholar
  3. Coen LD, Tanner CE (1989) Morphological variation and differential susceptibility to herbivory in the tropical brown alga Lobophora variegata. Mar Ecol Prog Ser 54:287–298. doi: 10.3354/meps054287 CrossRefGoogle Scholar
  4. Eisler R (1996) Silver hazards to fish, wildlife and invertebrates: a synoptic review. U.S. Department of the Interior, Washington DC, USAGoogle Scholar
  5. Gorsuch JW, Kramer JR, La Point TW (eds) (2003) Environmental transport, fate, and models: papers from environmental toxicology and chemistry, 1983–2002. SETAC Press, Pensacola, p 544Google Scholar
  6. Hédouin L, Bustamante P, Fichez R, Warnau M (2008) The tropical brown alga Lobophora variegata as a bioindicator of mining contamination in the New Caledonian lagoon: a field transplantation study. Mar Environ Res. doi: 10.1016/j.marenvres.2008.07.005
  7. Langston WJ, Burt GR (1994) Bioindicators of Ag availability in UK estuaries In: Andren AW, Bober TW (eds) Proceedings, 2nd Argentum international conference on the transport, fate and effects of silver in the environment, University of Wisconsin-Madison, WI, USA, pp 125–130Google Scholar
  8. Metian M, Bustamante P, Hédouin L, Warnau M (2008) Accumulation of trace elements in the tropical scallop Comptopallium radula from coral reefs in New Caledonia. Environ Pollut 152:543–552. doi: 10.1016/j.envpol.2007.07.009 CrossRefGoogle Scholar
  9. Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338:553–560. doi: 10.1042/0264-6021:3380553 CrossRefGoogle Scholar
  10. Rainbow PS, Phillips DJH (1993) Cosmopolitan biomonitors of trace metals. Mar Pollut Bull 26:593–601. doi: 10.1016/0025-326X(93)90497-8 CrossRefGoogle Scholar
  11. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108. doi 10.1897/1551-5028(1999)018<0089:BATOSC>2.3.CO;2CrossRefGoogle Scholar
  12. Rodriguez y Baena AM, Metian M, Teyssié JL, De Broyer C, Warnau M (2006) Experimental evidence for 234Th bioaccumulation in three Antarctic crustaceans: potential implications in particle flux studies. Mar Chem 100:354–365. doi: 10.1016/j.marchem.2005.10.022 CrossRefGoogle Scholar
  13. Sañudo-Wilhelmy SA, Flegal R (1992) Anthropogenic silver in the southern California bight: a new tracer of sewage in coastal waters. Environ Sci Technol 26:2147–2151. doi: 10.1021/es00035a012 CrossRefGoogle Scholar
  14. Schiewer S, Wong MH (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282. doi: 10.1016/S0045-6535(99)00421-X CrossRefGoogle Scholar
  15. Silver Institute (2003) World silver survey. The Silver Institute, Washington DC, USAGoogle Scholar
  16. Smith GJ, Flegal AR (1993) Silver in San Francisco Bay estuarine waters. Estuaries 16:547–558. doi: 10.2307/1352602 CrossRefGoogle Scholar
  17. Targett NM, Coen LC, Boettcher AA, Tanner CE (1992) Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89:464–470Google Scholar
  18. Warnau M, Fowler SW, Teyssié J-L (1996a) Biokinetics of selected heavy metals and radionuclides in two marine macrophytes: the seagrass Posidonia oceanica and the alga Caulerpa taxifolia. Mar Environ Res 41:343–362. doi: 10.1016/0141-1136(95)00025-9 CrossRefGoogle Scholar
  19. Warnau M, Iaccarino M, De Biase A, Temara A, Jangoux M, Dubois P, Pagano G (1996b) Spermiotoxicity and embryotoxicity of heavy metals in the echinoid Paracentrotus lividus. Environ Toxicol Chem 15:1931–1936. doi 10.1897/1551-5028(1996)015<1931:SAEOHM>2.3.CO;2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.International Atomic Energy Agency – Marine Environment LaboratoriesMonacoPrincipality of Monaco
  2. 2.Littoral, Environnement et Sociétés (LIENSs)UMR 6250, CNRS-Université de La RochelleLa Rochelle Cedex 01France

Personalised recommendations