Multivariate and Geoaccumulation Index Evaluation in Mangrove Surface Sediment of Mengkabong Lagoon, Sabah

  • S. M. PraveenaEmail author
  • A. Ahmed
  • M. Radojevic
  • M. H. Abdullah
  • A. Z. Aris


Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I geo) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.


Mangrove surface sediment Tide Multivariate analysis Geoaccumulation Index 



We would like to thank Mr. Asram and Mr. Neldin Jeoffrey for assisting with the field sampling. The author gratefully acknowledges her Universiti Malaysia Sabah Scholarship (YTL Foundation).


  1. APHA (1995) Standard methods for the examination of water and waste water, 19th edn. Washington, USAGoogle Scholar
  2. Church AH (1989) The ionic of the sea. The Phytologist 68:239–247Google Scholar
  3. El Nemr A, Khaled A, Sikaily AE (2006) Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environ Monit Assess 118:89–112. doi: 10.1007/s10661-006-0985-9 CrossRefGoogle Scholar
  4. Environmental Impact Assessment (1992) Proposed mangrove paradise resort complex on LA 91040377 Tuaran, Sabah. Perunding Sekitar, SabahGoogle Scholar
  5. Environmental Indicator Report (2003) The Environment Protection Department (EPD) Sabah: Syarikat Bumi Yakin, SabahGoogle Scholar
  6. Grande JA, Borrego J, Morales JA, Torre ML (2003) A description of how metal pollution occurs in the Tinto-Odiel Rias (Huelva-Spain) through the application of cluster analysis. Mar Pollut Bull 46:475–480. doi: 10.1016/S0025-326X(02)00452-6 CrossRefGoogle Scholar
  7. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi: 10.1023/A:1008119611481 CrossRefGoogle Scholar
  8. Hsue ZY, Chen ZS (2000) Monitoring the changes of redox potential, ph and electrical conductivity of the mangrove soils in Northern Taiwan. Proc Nat Sci Counc 24:143–150Google Scholar
  9. Hussein AH, Rabenhorst MC (2001) Tidal inundation of transgressive coastal areas: pedogenesis of salinization and alkalinization. Soil Sci Soc Am J 65:536–544Google Scholar
  10. Karbassi AR, Bayati I, Moatta F (2006) Origin and chemical partitioning of heavy metals in riverbed sediments. Int J Environ Sci Technol 3:35–42Google Scholar
  11. Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl river estuary. Environ Pollut 121:377–388. doi: 10.1016/S0269-7491(02)00234-8 CrossRefGoogle Scholar
  12. Matagi SV, Swai D, Mugabe R (1998) A review of heavy metals mechanism in wetlands. African J Trop Hydrobiol Fish 8:23–35Google Scholar
  13. Morad S (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. Blackwell Science Limited, LondonGoogle Scholar
  14. Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschan 79:778–783Google Scholar
  15. Preda M, Cox ME (2000) Sediment-water interaction, acidity and other water quality parameters in a subtropical setting, Pimpama river, Southeast Queensland. Environ Geo 39:319–329. doi: 10.1007/s002540050011 CrossRefGoogle Scholar
  16. Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Society of Chemistry, CambridgeGoogle Scholar
  17. Rubio B, Nombelia MA, Vilas F (2000) Geochemistry of major and trace elements in ediments of the Ria De Vigo (NW Spain): an assessment of metal pollution. Marine Pollut Bull 40:968–980. doi: 10.1016/S0025-326X(00)00039-4 CrossRefGoogle Scholar
  18. Soto-Jimenez MF, Paez-Osuna F (2001) Distribution and normalization of heavy metal concentrations in mangrove and lagoon sediments from Mazatlan Harbor (SE Gulf California). Estuar Coast Shelf Sci 53:259–274. doi: 10.1006/ecss.2000.0814 CrossRefGoogle Scholar
  19. Town and Regional Planning Department (TRPD) (2003). Project Sabah, 2003. Environmental Local Planning (ELP), Kota Kinabalu, SabahGoogle Scholar
  20. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 CrossRefGoogle Scholar
  21. Zhou H, Peng X, Pan J (2004) Distribution, source and enrichment of some chemical elements in sediments of the Pearl river estuary, China. Conti Shelf Res 24:1857–1875. doi: 10.1016/j.csr.2004.06.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. M. Praveena
    • 1
    Email author
  • A. Ahmed
    • 1
  • M. Radojevic
    • 2
  • M. H. Abdullah
    • 1
  • A. Z. Aris
    • 3
  1. 1.Environmental Science Programme, School of Science and TechnologyUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.Faulty of Engineering and Computer ScienceThe University of Nottingham Malaysia CampusSemenyih, Selangor Darul EhsanMalaysia
  3. 3.Faculty of Environmental StudiesUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations