Element Patterns in Feathers of Nestling Black-Crowned Night-Herons, Nycticorax nycticorax L., from Four Colonies in Delaware, Maryland, and Minnesota

  • Thomas W. Custer
  • Nancy H. Golden
  • Barnett A. Rattner
Article

Abstract

The pattern of elements in nestling black-crowned night-heron feathers from a rural Minnesota colony differed from colonies in industrialized regions of Maryland and Delaware. Except for chromium, however, the differences did not reflect the elements associated with waters and sediments of the Maryland and Delaware colonies. Therefore, elements in water and sediment do not necessarily bioaccumulate in night-heron feathers in relation to potential exposure. Although trace element patterns in feathers indicated differences among geographical locations, they did not separate all locations well and their usefulness as an indicator of natal colony location may be limited.

Keywords

Elements Feathers Metals Black-crowned night-heron 

References

  1. Becker PH, Henning D, Furness RW (1994) Differences in mercury contamination and elimination during feather development in gull and tern broods. Arch Environ Contam Toxicol 27:162–167. doi:10.1007/BF00214258 CrossRefGoogle Scholar
  2. Burger J (1994) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–311Google Scholar
  3. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Plymouth Marine Laboratories, Plymouth, UKGoogle Scholar
  4. Custer TW, Custer CM, Eichhorst BA, Warburton D (2007) Selenium and metal concentrations in waterbird eggs and chicks at Agassiz National Wildlife Refuge, Minnesota. Arch Environ Contam Toxicol 53:103–109. doi:10.1007/s00244-006-0139-7 CrossRefGoogle Scholar
  5. Donovan T, Buzas J, Jones P, Gibbs HL (2006) Tracking dispersal in birds: assessing the potential of elemental markers. Auk 123:500–511. doi:10.1642/0004-8038(2006)123[500:TDIBAT]2.0.CO;2 CrossRefGoogle Scholar
  6. Edwards WR, Smith KE (1984) Exploratory experiments on the stability of mineral profiles of feathers. J Wildl Manage 48:853–866. doi:10.2307/3801432 CrossRefGoogle Scholar
  7. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. doi:10.1007/BF02289565 CrossRefGoogle Scholar
  8. Golden NH, Rattner BA, McGowan PC, Parsons KC, Ottinger MA (2003) Concentrations of metals in feathers and blood of nestling black-crowned night-herons (Nycticorax nycticorax) in Chesapeake and Delaware Bays. Bull Environ Contam Toxicol 70:385–393. doi:10.1007/s00128-002-0203-6 CrossRefGoogle Scholar
  9. McGee BL, Fisher DJ, Yonkos LT, Ziegler GG (1999) Assessment of sediment contamination, acute toxicity, and population viability of the estuarine amphipod Leptocheirus plumulosus in Baltimore Harbor, Maryland, USA. Environ Toxicol Chem 18:2151–2160. doi:10.1897/1551-5028(1999)018<2151:AOSCAT>2.3.CO;2CrossRefGoogle Scholar
  10. Sutton CC, O’Herron JCII, Zappalorti RT (1996) The scientific characterization of the Delaware Estuary. Delaware Estuary Program (DRBC Project No. 321; HA File No 93.21), 200 ppGoogle Scholar
  11. Weyers BE, Gluck E, Stoeppler M (1988) Investigation of the significance of heavy metal contents of blackbird feathers. Sci Total Environ 77:61–67. doi:10.1016/0048-9697(88)90315-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas W. Custer
    • 1
  • Nancy H. Golden
    • 2
  • Barnett A. Rattner
    • 2
  1. 1.Upper Midwest Environmental Sciences CenterUS Geological SurveyLa CrosseUSA
  2. 2.Beltsville Laboratory, Patuxent Wildlife Research CenterUS Geological SurveyBeltsvilleUSA

Personalised recommendations