Advertisement

Temporal Decrease of Trivalent Chromium Concentration in a Standardized Algal Culture Medium: Experimental Results and Implications for Toxicity Evaluation

  • Davide A. L. VignatiEmail author
  • Mamadou L. Beye
  • Janusz Dominik
  • Anna O. Klingemann
  • Montserrat Filella
  • Andrzej Bobrowski
  • Benoît J. Ferrari
Article

Abstract

The fate of two trivalent chromium salts (nitrate and chloride) in ISO algal culture medium was followed over 72 h; i.e., the typical duration of algal toxicity tests. Fifty percent of the initial Cr spikes was lost from the solutions by 24 h, with losses up to 90% after 72 h. Monitoring of the temporal variability of Cr(III) concentrations in algal culture media appears necessary to better characterize the toxicity of trivalent chromium to algae.

Keywords

Trivalent chromium Algal ISO medium Chromium toxicity Chromium speciation 

Notes

Acknowledgements

This research was partially supported by the Swiss National Science Foundation (grant 200020-101844). Dr. Pierre-Yves Favarger (Institut F.-A. Forel) helped with ICP-MS analysis and Sandra Levai (University of Geneva) with the search of primary literature sources.

References

  1. Baral A, Engelken R, Stephens W, Farris J, Hannigan R (2006) Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries. Arch Environ Contam Toxicol 50:496–502CrossRefGoogle Scholar
  2. Den Dooren de Jong LE (1965) Tolerance of Chlorella vulgaris for metallic and non-metallic ions. Antonie van Leeuwenhoek 31:301–313CrossRefGoogle Scholar
  3. Eary LE, Rai D (1987) Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ Sci Technol 21:1187–1193CrossRefGoogle Scholar
  4. Greene JC, Miller WE, Debacon M, Long MA, Bartels CL (1988) Use of Selenastrum capricornutum to assess the toxicity potential of surface and groundwater contamination caused by chromium waste. Environ Toxicol Chem 7:35–39CrossRefGoogle Scholar
  5. INERIS (2005) Chrome et ses derivés. INERIS – DRC-01-05590-00DF253.doc. 80pp (in French)Google Scholar
  6. ISO 8692 (2004) Water quality—Freshwater algal growth inhibition test with unicellular green algae. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  7. IUCLID (1999) Chromium. International Uniform Chemical Information Database, European Commission, ISPRAGoogle Scholar
  8. Koukal B, Dominik J, Vignati D, Arpagaus P, Santiago S, Ouddane B, Benaabidate L (2004) Assessment of water quality and toxicity of polluted rivers Fez and Sebou in the region of Fez (Morocco). Environ Pollut 131:163–172CrossRefGoogle Scholar
  9. Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, New Jersey, 600 pp (Figure 2.2; p 54)Google Scholar
  10. Lin CJ (2002) The chemical transformations of chromium in natural waters—A model study. Water Air Soil Pollut 139:137–158CrossRefGoogle Scholar
  11. Meisch HU, Schmitt-Beckmann I (1979) Influence of tri and hexavalent chromium on two Chlorella strains. Zeitschrift für Pflanzenphysiologie Bd 94:231–239Google Scholar
  12. Munn SJ, Allanou R, Aschberger K, Berthault F, Cosgrove O, Luotamo M, Pakalin S, Paya-Perez A, Pellegrini G, Schwarz-Schulz B, Vegro S (eds) (2005) Chromium trioxide, sodium chromate, sodium dichromate, ammonium dichromate, potassium dichromate, EUR 21508 EN. European Union Risk Assessment Report, vol 53. Luxembourg, Office for Official Publications of the European CommunitiesGoogle Scholar
  13. Pawlisz AV, Kent RA, Schneider UA, Jefferson C (1997) Canadian water quality guidelines for chromium. Environ Toxicol Water Qual 12:123–183CrossRefGoogle Scholar
  14. Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23CrossRefGoogle Scholar
  15. Rai D, Moore DA, Hess NJ, Rao L, Clark SB (2004) Chromium(III) hydroxide solubility in the aqueous Na+–OH–H2PO4–HPO42–H2O system: a thermodynamic model. J Solut Chem 33:1213–1242CrossRefGoogle Scholar
  16. Rozan TM, Lassman ME, Ridge DP, Luther III GW (2000) Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic river waters. Nature 406:879–882CrossRefGoogle Scholar
  17. Sass BM, Rai D (1987) Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg Chem 26:2228–2282CrossRefGoogle Scholar
  18. Stoecker B (2004) Chromium. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn, vol 2—Metals and their compounds. Wiley-VCH, Weinheim, Germany, pp 709–729Google Scholar
  19. Town RM, Filella M (2002) Implications of natural organic matter binding heterogeneity on understanding lead (II) complexation in aquatic systems. Sci Total Environ 300:143–154CrossRefGoogle Scholar
  20. Turbak SC, Olson SB, McFeters GA (1986) Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Res 20:91–96CrossRefGoogle Scholar
  21. Walsh AR, O’Halloran J (1997) The accumulation of chromium by mussels Mytilus edulis (L.) as a function of valency, solubility and ligation. Mar Environ Res 43:41–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Davide A. L. Vignati
    • 1
    Email author
  • Mamadou L. Beye
    • 1
  • Janusz Dominik
    • 1
  • Anna O. Klingemann
    • 1
  • Montserrat Filella
    • 2
  • Andrzej Bobrowski
    • 3
  • Benoît J. Ferrari
    • 1
  1. 1.University of Geneva Institut F.-A. ForelVersoixSwitzerland
  2. 2.Department of Inorganic, Analytical and Applied ChemistryUniversity of GenevaGeneva 4Switzerland
  3. 3.Department of Building Materials Technology, Faculty of Materials Science and CeramicsAGH – University of Science and TechnologyCracowPoland

Personalised recommendations