Advertisement

Acute and Sub-Lethal Toxicity of Three POEA Surfactant Formulations to Daphnia magna

  • John M. Brausch
  • Blake Beall
  • Philip N. Smith
Article

Abstract

Polyethoxylated tallowamine (POEA) is a non-ionic surfactant used in many herbicide formulations to increase the ability of active ingredients to penetrate leaf cuticles. However, it has also been shown to disrupt respiratory membranes in aquatic organisms. In this study, Daphnia magna was used to examine the lethal and sub-lethal toxicity of three POEA formulations consisting of 5:1, 10:1, and 15:1 average oxide:tallowamine. The formulation consisting of 10:1 was the most acutely toxic with a 48-h LC50 value of 97.0 μg/L and 15:1 was least toxic at 849.4 μg/L. All formulations inhibited growth at concentrations between 100 and 500 μg/L.

Keywords

Daphnia magna POEA Surfactants 

References

  1. Adams WJ, Biddinger GR, Robillard KA, Gorsuch JW (1995) A summary of the acute toxicity of 14 phthalate ethers to representative aquatic organisms. Environ Toxicol Chem 14:1569–1574CrossRefGoogle Scholar
  2. Brausch JM, Smith PN (2007) Toxicity of three POEA surfactant formulations to the fairy shrimp Thamnocephalus platyurus. Arch Environ Contam Toxicol 52:217–222CrossRefGoogle Scholar
  3. Congdon JD, Dunham AE, Hopkins WA, Rowe CL, Hinton TG (2001) Resource allocation-based life histories: A conceptual basis for studies in ecological toxicology. Environ Toxicol Chem 20:1698–1703CrossRefGoogle Scholar
  4. Dorn PB, Salanitro JP, Evans SH (1993) Assessing the aquatic hazard of some branched and linear nonionic surfactants by biodegradation and toxicity. Environ Toxicol Chem 12:1751–1762CrossRefGoogle Scholar
  5. Folmar LC, Sanders JQ, Julin AM (1979) Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8:269–278CrossRefGoogle Scholar
  6. Forbes VE, Calow P (1996) Costs of living with contaminants: Implications for assessing low-level exposures. BELLE Newsletter 4Google Scholar
  7. Foy CL (1987) Adjuvants: Terminology, classification, and mode of action. In: Chow PNP, Grant CA, Hinshalwood AM, Simundon E (eds) Adjuvants and Agrochemicals, CRC Press, Boca Raton, Florida, pp 1–15Google Scholar
  8. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup Herbicide. Rev Environ Contam Toxicol 167:35–120Google Scholar
  9. Hutchinson GE (1967) A treatise on limnology. Vol. 2: Introduction to lake biology and the limnoplankton. Wiley, New YorkGoogle Scholar
  10. Kaluza U, Taeger K (1996) Influence of the chemical structure of alcohol ethoxylates on ecotoxicological charachteristics. Tenside Surfact Det 33:46–51Google Scholar
  11. Krogh KA, Halling-Sorensen B, Mogensen BB, Vejrup KV (2003) Environmental properties and effect of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50:871–901CrossRefGoogle Scholar
  12. Lindgren A, Sjostrom M, Wold S (1996) QSAR modeling of the toxicity of some nonionic surfactants towards fairy shrimp. Quant Struct-Act Rel 15:208–218CrossRefGoogle Scholar
  13. Lynch M (1989) The life history consequences of resource depression in Daphnia pulex. Ecology 70:246–256CrossRefGoogle Scholar
  14. Relyea RA (2005a) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15(4):1118–1124Google Scholar
  15. Relyea RA (2005b) Pesticides and amphibians: The importance of community context. Ecol Appl 15(4):1125–1134Google Scholar
  16. Sandbacka M, Christianson I, Isomaa B (2000) The acute toxicity of surfactants on fish cells, Daphnia magna and fish-A comparative study. Toxicol In Vitro 14:61–68CrossRefGoogle Scholar
  17. Scheuerell MD, Schindler DE, Litt AH, Edmondson WT (2002) Environmental and algal forcing of Daphnia production dynamics. Limnol Oceanogr 47:1477–1485CrossRefGoogle Scholar
  18. Schwartz SS (1984) Life history strategies in Daphnia: a review and predictions. Oikos 42:114–122CrossRefGoogle Scholar
  19. Sibly R, Calow P (1989) A life-cycle theory of response to stress. Biol J Linn Soc 37:101–116Google Scholar
  20. United States Department of Agriculture (2005) Cotton varieties planted 2005 crop. Agricultural Marketing Service – Cotton Program, Memphis, TennesseeGoogle Scholar
  21. United States Environmental Protection Agency (2002) USEPA document EPA-821-R02-012. United States Environmental Protection Agency, Washington, D. CGoogle Scholar
  22. Uppgard LL, Lindgren A, Sjostrom M, Wold S (2000) Multivariate quantitative structure-activity relationships for the aquatic toxicity of technical nonionic surfactants. JSurfactants Deterg 3(1):33–41CrossRefGoogle Scholar
  23. Van Valkenburg JW (1982) Terminology, classification, and chemistry. In: Adjuvants for Herbicides. Weed Science Society of America, Illinois, pp 1–9Google Scholar
  24. Wang N, Besser JM, Buckler DR, Honegger JL, Ingersoll CG, Johnson BT, Kurtzweil ML, MacGregor J, McKee MJ (2005) Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms. Chemosphere 59:545–51CrossRefGoogle Scholar
  25. Wong DC, Dorn PB, Chai EY (1997) Acute toxicity and structure-activity relationships of nine alcohol ethoxylate surfactants to fathead minnow and Daphnia magna. Environ Toxicol Chem 16:1970–1976CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • John M. Brausch
    • 1
    • 2
  • Blake Beall
    • 1
  • Philip N. Smith
    • 1
  1. 1.The Institute of Environmental and Human Health, Department of Environmental ToxicologyTexas Tech UniversityTexasUSA
  2. 2.The Institute of Environmental and Human Health, Department of Environmental ToxicologyTexas Tech UniversityTexasUSA

Personalised recommendations