Advertisement

Inflammatory biomarker profiles of mental disorders and their relation to clinical, social and lifestyle factors

  • David Baumeister
  • Alice Russell
  • Carmine M. Pariante
  • Valeria MondelliEmail author
Invited Reviews

Abstract

In the last few decades, mental health research has increasingly provided evidence supporting the role of inflammation in pathogenesis, course and treatment of mental disorders. With such a steep incline of research, resulting in a wealth of emerged findings, it has become difficult to follow developments within the field. The present review sets out to present the recent developments and to give an overview of the inflammatory profiles of depression, psychosis and bipolar disorder, as well as variations within these disorders. Moreover, mediating factors such as social environment and childhood experience are discussed, both in terms of their potential in elucidating the complex interface between the inflammation and other closely related biological systems, as well as the possibly confounding impact of various lifestyle factors. Whilst many issues in this fascinating area of research remain to be fully understood and elaborated, all current evidence suggests that inflammation plays a key role in mental disorders and may open up novel avenues for clinical treatment.

Keywords

Inflammation Cytokine Interleukin Bipolar disorder Psychosis Depression 

Notes

Acknowledgments

This work was supported by the Grant “Persistent Fatigue Induced by Interferon-alpha: A New Immunological Model for Chronic Fatigue Syndrome” from the Medical Research Council (UK) MR/J002739/1. Additional support has been offered by the National Institute for Health Research Mental Health Biomedical Research Centre in Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London; by a Grant from the Psychiatry Research Trust, UK (McGregor 97); by Janssen Parmaceutica NV/Janssen Pharmaceutical Companies of Johnson & Johnson; and by the Institute of Psychiatry at Kings College London.

References

  1. 1.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Raison CL, Demetrashvili M, Capuron L, Miller AH (2005) Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 19(2):105–123PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, Lupien SJ, Roozendaal B, Seckl JR (2006) Do corticosteroids damage the brain? J Neuroendocrinol 18(6):393–411PubMedCrossRefGoogle Scholar
  5. 5.
    Pariante CM (2006) The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol 20(4 Suppl):79–84PubMedCrossRefGoogle Scholar
  6. 6.
    Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31(9):464–468PubMedCrossRefGoogle Scholar
  7. 7.
    Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404PubMedCrossRefGoogle Scholar
  8. 8.
    Borges S, Gayer-Anderson C, Mondelli V (2013) A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology 38(5):603–611PubMedCrossRefGoogle Scholar
  9. 9.
    Mondelli V, Dazzan P, Hepgul N, Di Forti M, Aas M, D’Albenzio A, Di Nicola M, Fisher H, Handley R, Marques TR, Morgan C, Navari S, Taylor H, Papadopoulos A, Aitchison KJ, Murray RM, Pariante CM (2010) Abnormal cortisol levels during the day and cortisol awakening response in first-episode psychosis: the role of stress and of antipsychotic treatment. Schizophr Res 116(2–3):234–242PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Duffy A, Lewitzka U, Doucette S, Andreazza A, Grof P (2012) Biological indicators of illness risk in offspring of bipolar parents: targeting the hypothalamic–pituitary–adrenal axis and immune system. Early Interv Psychiatry 6(2):128–137PubMedCrossRefGoogle Scholar
  11. 11.
    Pace TW, Hu F, Miller AH (2007) Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 21(1):9–19PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Silverman MN, Mukhopadhyay P, Belyavskaya E, Tonelli LH, Revenis BD, Doran JH, Ballard BE, Tam J, Pacher P, Sternberg EM (2013) Glucocorticoid receptor dimerization is required for proper recovery of LPS-induced inflammation, sickness behavior and metabolism in mice. Mol Psychiatry 18(9):1006–1017PubMedCrossRefGoogle Scholar
  13. 13.
    Tsao CW, Lin YS, Cheng JT, Lin CF, Wu HT, Wu SR, Tsai WH (2008) Interferon-alpha-induced serotonin uptake in Jurkat T cells via mitogen-activated protein kinase and transcriptional regulation of the serotonin transporter. J Psychopharmacol 22(7):753–760PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31(10):2121–2131PubMedGoogle Scholar
  15. 15.
    Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD (2005) p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 280(16):15649–15658PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA (2010) Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35(13):2510–2520PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229PubMedCrossRefGoogle Scholar
  18. 18.
    Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2010) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):722–729PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM (2012) Interleukin-1beta: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37(4):939–949PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yucel M, Gama CS, Dodd S, Dean B, Magalhaes PV, Amminger P, McGorry P, Malhi GS (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817PubMedCrossRefGoogle Scholar
  21. 21.
    Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785PubMedCrossRefGoogle Scholar
  22. 22.
    Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18(5):595–606PubMedCrossRefGoogle Scholar
  23. 23.
    Bitanihirwe BK, Woo TU (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35(3):878–893PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dedon PC, Tannenbaum SR (2004) Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 423(1):12–22PubMedCrossRefGoogle Scholar
  26. 26.
    Grinberg YY, Dibbern ME, Levasseur VA, Kraig RP (2013) Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-alpha responses to spreading depression. J Neurochem 126(5):662–672PubMedCrossRefGoogle Scholar
  27. 27.
    Cunha AB, Frey BN, Andreazza AC, Goi JD, Rosa AR, Goncalves CA, Santin A, Kapczinski F (2006) Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett 398(3):215–219PubMedCrossRefGoogle Scholar
  28. 28.
    Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Pirildar S, Gonul AS, Taneli F, Akdeniz F (2004) Low serum levels of brain-derived neurotrophic factor in patients with schizophrenia do not elevate after antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 28(4):709–713PubMedCrossRefGoogle Scholar
  30. 30.
    Patas K, Penninx BW, Bus BA, Vogelzangs N, Molendijk ML, Elzinga BM, Bosker FJ, Oude Voshaar RC (2014) Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain Behav Immun 36:71–79PubMedCrossRefGoogle Scholar
  31. 31.
    Schulte-Herbrüggen O, Nassenstein C, Lommatzsch M, Quarcoo D, Renz H, Braun A (2005) Tumor necrosis factor-alpha and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J Neuroimmunol 160(1–2):204–209PubMedCrossRefGoogle Scholar
  32. 32.
    Mondelli V, Cattaneo A, Belvederi Murri M, Di Forti M, Handley R, Hepgul N, Miorelli A, Navari S, Papadopoulos AS, Aitchison KJ, Morgan C, Murray RM, Dazzan P, Pariante CM (2011) Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry 72(12):1677–1684PubMedCrossRefGoogle Scholar
  33. 33.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239PubMedCrossRefGoogle Scholar
  35. 35.
    Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71(2):171–186PubMedCrossRefGoogle Scholar
  36. 36.
    Hiles SA, Baker AL, de Malmanche T, Attia J (2012) A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: exploring the causes of heterogeneity. Brain Behav Immun 26(7):1180–1188PubMedCrossRefGoogle Scholar
  37. 37.
    Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood–brain barrier. Neurosci Lett 179(1–2):53–56PubMedCrossRefGoogle Scholar
  38. 38.
    Yang ZZ, Grote DM, Ziesmer SC, Manske MK, Witzig TE, Novak AJ, Ansell SM (2011) Soluble IL-2Ralpha facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-Hodgkin lymphoma. Blood 118(10):2809–2820PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150(3):736–744PubMedCrossRefGoogle Scholar
  40. 40.
    Eisenhardt SU, Thiele JR, Bannasch H, Stark GB, Peter K (2009) C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle 8(23):3885–3892PubMedCrossRefGoogle Scholar
  41. 41.
    Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63(8):801–808PubMedCrossRefGoogle Scholar
  42. 42.
    Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671PubMedCrossRefGoogle Scholar
  43. 43.
    Munkholm K, Braüner JV, Kessing LV, Vinberg M (2013) Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 47(9):1119–1133PubMedCrossRefGoogle Scholar
  44. 44.
    Modabbernia A, Taslimi S, Brietzke E, Ashrafi M (2013) Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry 74(1):15–25PubMedCrossRefGoogle Scholar
  45. 45.
    Rose-John S, Waetzig GH, Scheller J, Grotzinger J, Seegert D (2007) The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets 11(5):613–624PubMedCrossRefGoogle Scholar
  46. 46.
    World Health Organization (1993) The ICD-10 Classification of Mental and Behavioural Disorders: diagnostic criteria for research. World Health Organization, GenevaGoogle Scholar
  47. 47.
    Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW (2012) Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 18(6):692–699PubMedCrossRefGoogle Scholar
  48. 48.
    Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22(4):370–379PubMedCrossRefGoogle Scholar
  49. 49.
    Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32(2):445–450PubMedCrossRefGoogle Scholar
  50. 50.
    Serafini G, Pompili M, Elena Seretti M, Stefani H, Palermo M, Coryell W, Girardi P (2013) The role of inflammatory cytokines in suicidal behavior: a systematic review. Eur Neuropsychopharmacol 23(12):1672–1686PubMedCrossRefGoogle Scholar
  51. 51.
    Hiles SA, Baker AL, de Malmanche T, Attia J (2012) Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med 42(10):2015–2026PubMedCrossRefGoogle Scholar
  52. 52.
    Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R (2007) C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 93(1–3):261–265PubMedCrossRefGoogle Scholar
  53. 53.
    Garcia-Rizo C, Fernandez-Egea E, Oliveira C, Justicia A, Bernardo M, Kirkpatrick B (2012) Inflammatory markers in antipsychotic-naive patients with nonaffective psychosis and deficit vs. nondeficit features. Psychiatry Res 198(2):212–215PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Munkholm K, Vinberg M, Kessing LV (2012) Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord 144(1–2):16–27PubMedGoogle Scholar
  55. 55.
    Tsai S-YM, Yang Y–Y, Kuo C-J, Chen C–C, Leu S-JC (2001) Effects of symptomatic severity on elevation of plasma soluble interleukin-2 receptor in bipolar mania. J Affect Disord 64(2–3):185–193PubMedCrossRefGoogle Scholar
  56. 56.
    Tsai S-Y, Chen K-P, Yang Y–Y, Chen C–C, Lee J-C, Singh VK, Leu S-JC (1999) Activation of indices of cell-mediated immunity in bipolar mania. Biol Psychiatry 45(8):989–994PubMedCrossRefGoogle Scholar
  57. 57.
    Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R (2007) Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 31(4):952–955PubMedCrossRefGoogle Scholar
  58. 58.
    Dickerson F, Stallings C, Origoni A, Vaughan C, Khushalani S, Yolken R (2013) Elevated C-reactive protein and cognitive deficits in individuals with bipolar disorder. J Affect Disord 150(2):456–459PubMedCrossRefGoogle Scholar
  59. 59.
    Hope S, Dieset I, Agartz I, Steen NE, Ueland T, Melle I, Aukrust Pål, Andreassen OA (2011) Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatric Res 45(12):1608–1616CrossRefGoogle Scholar
  60. 60.
    Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci USA 104(4):1319–1324PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, Heim CM (2006) Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 163(9):1630–1633PubMedCrossRefGoogle Scholar
  62. 62.
    Coelho R, Viola TW, Walss-Bass C, Brietzke E, Grassi-Oliveira R (2014) Childhood maltreatment and inflammatory markers: a systematic review. Acta Psychiatr Scand 129(3):180–192PubMedCrossRefGoogle Scholar
  63. 63.
    Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, Cole S, Kobor MS (2009) Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci USA 106(34):14716–14721PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Chen E, Miller GE, Kobor MS, Cole SW (2011) Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Mol Psychiatry 16(7):729–737PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Lu S, Gao W, Wei Z, Wu W, Liao M, Ding Y, Zhang Z, Li L (2013) Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma. PLoS One 8(7):e69350PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Mangold D, Wand G, Javors M, Mintz J (2010) Acculturation, childhood trauma and the cortisol awakening response in Mexican–American adults. Horm Behav 58(4):637–646PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Carpenter LL, Ross NS, Tyrka AR, Anderson GM, Kelly M, Price LH (2009) Dex/CRH test cortisol response in outpatients with major depression and matched healthy controls. Psychoneuroendocrinology 34(8):1208–1213PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Heim C, Nemeroff CB (2002) Neurobiology of early life stress: clinical studies. Semin Clin Neuropsychiatry 7(2):147–159PubMedCrossRefGoogle Scholar
  71. 71.
    Heim C, Mletzko T, Purselle D, Musselman DL, Nemeroff CB (2008) The dexamethasone/corticotropin-releasing factor test in men with major depression: role of childhood trauma. Biol Psychiatry 63(4):398–405PubMedCrossRefGoogle Scholar
  72. 72.
    Putnam KT, Harris WW, Putnam FW (2013) Synergistic childhood adversities and complex adult psychopathology. J Trauma Stress 26(4):435–442PubMedCrossRefGoogle Scholar
  73. 73.
    Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, Read J, van Os J, Bentall RP (2012) Childhood adversities increase the risk of psychosis: a meta-analysis of patient–control, prospective- and cross-sectional cohort studies. Schizophr Bull 38(4):661–671PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Subica AM (2013) Psychiatric and physical sequelae of childhood physical and sexual abuse and forced sexual trauma among individuals with serious mental illness. J Trauma Stress 26(5):588–596PubMedCrossRefGoogle Scholar
  75. 75.
    Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21(7):901–912PubMedCrossRefGoogle Scholar
  76. 76.
    Bylsma LM, Taylor-Clift A, Rottenberg J (2011) Emotional reactivity to daily events in major and minor depression. J Abnorm Psychol 120(1):155–167PubMedCrossRefGoogle Scholar
  77. 77.
    Miller GE, Rohleder N, Stetler C, Kirschbaum C (2005) Clinical depression and regulation of the inflammatory response during acute stress. Psychosom Med 67(5):679–687PubMedCrossRefGoogle Scholar
  78. 78.
    Wieck A, Grassi-Oliveira R, do Prado CH, Rizzo LB, de Oliveira AS, Kommers-Molina J, Viola TW, Teixeira AL, Bauer ME (2013) Differential neuroendocrine and immune responses to acute psychosocial stress in women with type 1 bipolar disorder. Brain Behav Immun 34:47–55PubMedCrossRefGoogle Scholar
  79. 79.
    Carpenter LL, Gawuga CE, Tyrka AR, Lee JK, Anderson GM, Price LH (2010) Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology 35(13):2617–2623PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Myin-Germeys I, Delespaul P, van Os J (2005) Behavioural sensitization to daily life stress in psychosis. Psychol Med 35(5):733–741PubMedCrossRefGoogle Scholar
  81. 81.
    Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, Allen NB, Stuart AL, Hayley AC, Byrne ML, Maes M (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200PubMedCentralPubMedGoogle Scholar
  82. 82.
    Pedersen MS, Benros ME, Agerbo E, Borglum AD, Mortensen PB (2012) Schizophrenia in patients with atopic disorders with particular emphasis on asthma: a Danish population-based study. Schizophr Res 138(1):58–62PubMedCrossRefGoogle Scholar
  83. 83.
    Eltas A, Kartalci S, Eltas SD, Dundar S, Uslu MO (2013) An assessment of periodontal health in patients with schizophrenia and taking antipsychotic medication. Int J Dent Hyg 11(2):78–83PubMedCrossRefGoogle Scholar
  84. 84.
    Wei J, Hemmings GP (2005) Gene, gut and schizophrenia: the meeting point for the gene-environment interaction in developing schizophrenia. Med Hypotheses 64(3):547–552PubMedCrossRefGoogle Scholar
  85. 85.
    O’Connor MF, Bower JE, Cho HJ, Creswell JD, Dimitrov S, Hamby ME, Hoyt MA, Martin JL, Robles TF, Sloan EK, Thomas KS, Irwin MR (2009) To assess, to control, to exclude: effects of biobehavioral factors on circulating inflammatory markers. Brain Behav Immun 23(7):887–897PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Kirkpatrick B, Miller BJ (2013) Inflammation and schizophrenia. Schizophr Bull 39(6):1174–1179PubMedCrossRefGoogle Scholar
  87. 87.
    Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS (2009) Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. J Clin Psychiatry 70(8):1078–1090PubMedCrossRefGoogle Scholar
  88. 88.
    Hamdani N, Doukhan R, Kurtlucan O, Tamouza R, Leboyer M (2013) Immunity, inflammation, and bipolar disorder: diagnostic and therapeutic implications. Curr Psychiatry Rep 15(9):387PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Baumeister
    • 1
  • Alice Russell
    • 1
  • Carmine M. Pariante
    • 1
  • Valeria Mondelli
    • 1
    Email author
  1. 1.Stress, Psychiatry and Immunology Lab, Department of Psychological Medicine, Institute of Psychiatry, Kings College LondonThe James Black CentreLondonUK

Personalised recommendations