Social Psychiatry and Psychiatric Epidemiology

, Volume 47, Issue 2, pp 263–270 | Cite as

Age-related predictors of institutionalization: results of the German study on ageing, cognition and dementia in primary care patients (AgeCoDe)

  • Melanie Luppa
  • Steffi G. Riedel-Heller
  • Tobias Luck
  • Birgitt Wiese
  • Hendrik van den Bussche
  • Franziska Haller
  • Melanie Sauder
  • Edelgard Mösch
  • Michael Pentzek
  • Anja Wollny
  • Marion Eisele
  • Thomas Zimmermann
  • Hans-Helmut König
  • Wolfgang Maier
  • Horst Bickel
  • Jochen Werle
  • Siegfried Weyerer
  • For the AgeCoDe study group
Original Paper

Abstract

Background

In the last decades, many community-based studies have addressed predictors of nursing home placement (NHP) among the elderly. So far, predictors have not been analyzed separately for different age groups.

Methods

For a German GP-sample of 3,208 subjects aged 75 years and older, socio-demographic, clinical, and psychometric parameters were requested every 1.5 years over three waves. Logistic regression models determined predictors of NHP for total sample and for two different age groups. A CART analysis identified factors discriminating best between institutionalized and non-institutionalized individuals.

Results

Of the overall sample, 4.7% of the sample (n = 150) was institutionalized during the study period. Baseline characteristics associated with a higher risk of NHP for the total sample were age, living without spouse, cognitive and functional impairment and depression. In the CART analysis, age was the major discriminator at the first level (at age 81). In subgroup regression analyses, for the younger elderly (age 75–81) being single as well as cognitive and functional impairment increased the risk of NHP; in the advanced elderly (age 82+) being widowed and subjective memory impairment were significant predictors for NHP, and cognitive and functional impairment became non-significant as predictors of NHP.

Conclusions

Predictors of NHP may differ in old age groups. The fact that many predictors show inconsistent results as predictors of NHP in the international literature may be attributed to the lack of differentiation in age groups.

Keywords

Institutionalization Nursing home placement Nursing home admission Predictors Age 

References

  1. 1.
    Kinsella K, Velkoff VA (2001) An aging world: 2001. International Population Reports. Washington DC: US Bureau of Census, US Government Printing OfficeGoogle Scholar
  2. 2.
    Channon A, Matthews Z, Van Lerberghe W (2006) Will there be enough people to care? Notes on the workforce implications of demographic change 2005–2050? Background paper prepared for The world health report 2006: working together for health. World Health OrganizationGoogle Scholar
  3. 3.
    Wancata J, Musalek M, Alexandrowicz R, Krautgartner M (2003) Number of dementia sufferers in Europe between the years 2000 and 2050. Eur Psychiatry 18:306–313PubMedCrossRefGoogle Scholar
  4. 4.
    Federal Statistical Office (2007) Pflegestatistik 2005—Pflege im Rahmen der Pflegeversicherung—Deutschlandergebnisse. Statistisches Bundesamt, WiesbadenGoogle Scholar
  5. 5.
    Gaugler JE, Duval S, Anderson KA, Kane RL (2007) Predicting nursing home admission in the U.S: a meta-analysis. BMC Geriatr 7:13PubMedCrossRefGoogle Scholar
  6. 6.
    Luppa M, Luck T, Brähler E, König H-H, Riedel-Heller SG (2008) Prediction of institutionalisation in dementia—a systematic review. Dement Geriatr Cogn Disord 26:65–78PubMedCrossRefGoogle Scholar
  7. 7.
    Luppa M, Luck T, Weyerer S, König H-H, Brähler E, Riedel-Heller SG (2010) Prediction of institutionalisation in the elderly. A systematic review. Age Ageing 39:31–38PubMedCrossRefGoogle Scholar
  8. 8.
    Wingard DL, Jones DW, Kaplan RM (1987) Institutional care utilization by the elderly: a critical review. Gerontologist 27:156–163PubMedCrossRefGoogle Scholar
  9. 9.
    Chenier MC (1987) Review and analysis of caregiver burden and nursing home placement. Geriatr Nurs 18:121–126CrossRefGoogle Scholar
  10. 10.
    Zaudig M, Hiller W (1996) SIDAM-Handbuch Strukturiertes Interview für die Diagnose einer Demenz vom Alzheimer Typ, der Multiinfarkt- (oder vaskulären) Demenz und Demenzen anderer Ätiologie nach DSM-III-R, DSM-IV, ICD-10. Verlag Hans Huber, BernGoogle Scholar
  11. 11.
    Folstein MF, Folstein SE, McHugh PR (1965) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefGoogle Scholar
  12. 12.
    Luck T, Zaudig M, Wiese B, Riedel-Heller SG (2007) SIDAM: age- and education-specific reference values for the cognitive test section according to the new CASMIN Educational Classification. Z Gerontopsychol Psychiatr 20:31–38Google Scholar
  13. 13.
    Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165PubMedGoogle Scholar
  14. 14.
    Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186PubMedCrossRefGoogle Scholar
  15. 15.
    Sheikh JI, Yesavage JA (1986) Geriatric Depression Scale (GDS). Recent evidence and development of a shorter version. Clinical Gerontologist 5:165–173CrossRefGoogle Scholar
  16. 16.
    Gauggel S, Birkner B (1999) Validity and reliability of a German version of the Geriatric Depression Scale (GDS). Z Klin Psychol Forschung Praxis 28:18–27CrossRefGoogle Scholar
  17. 17.
    Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, BelmontGoogle Scholar
  18. 18.
    Brauns H, Steinmann S (1999) Educational reform in France, West-Germany and the United Kingdom. ZUMA-Nachr 44:7–44Google Scholar
  19. 19.
    Harris Y (2007) Depression as a risk factor for nursing home admission among older individuals. J Am Med Dir Assoc 8:14–20PubMedCrossRefGoogle Scholar
  20. 20.
    Aguero-Torres H, von Strauss E, Viitanen M, Winblad B, Fratiglioni L (2004) Institutionalization in the elderly: the role of chronic diseases and dementia. Cross-sectional and longitudinal data from a population-based study. J Clin Epidemiol 54:795–801CrossRefGoogle Scholar
  21. 21.
    Woo J, Ho SC, Yu AL, Lau J (2000) An estimate of long-term care needs and identification of risk factors for institutionalization among Hong Kong Chinese aged 70 years and over. J Gerontol A Biol Sci Med Sci 55:M64–M69PubMedCrossRefGoogle Scholar
  22. 22.
    Miller EA, Weissert WG (2000) Predicting elderly people’s risk for nursing home placement, hospitalization, functional impairment, and mortality: a synthesis. Med Care Res Rev 57:259–297PubMedCrossRefGoogle Scholar
  23. 23.
    Gaugler JE, Yu F, Krichbaum K, Wyman JF (2009) Predictors of nursing home admission for persons with dementia. Medical Care 47:191–198PubMedCrossRefGoogle Scholar
  24. 24.
    Riedel-Heller SG, Busse A, Aurich C, Matschinger H, Angermeyer MC (2001) Prevalence of dementia according to DSM-III-R and ICD-10: results of the Leipzig Longitudinal Study of the Aged (LEILA75+) Part 1. Br J Psychiatry 179:250–254PubMedCrossRefGoogle Scholar
  25. 25.
    Jagger C, Gillies C, Moscone F, Cambois E, van Oyen H, Nusselder W, Robine JM (2008) Inequalities in healthy life years in the 25 countries of the European Union in 2005: a cross-national meta-regression analysis. Lancet 372:2124–2131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Melanie Luppa
    • 1
  • Steffi G. Riedel-Heller
    • 2
  • Tobias Luck
    • 1
  • Birgitt Wiese
    • 3
  • Hendrik van den Bussche
    • 4
  • Franziska Haller
    • 5
  • Melanie Sauder
    • 5
  • Edelgard Mösch
    • 6
  • Michael Pentzek
    • 7
  • Anja Wollny
    • 7
  • Marion Eisele
    • 4
  • Thomas Zimmermann
    • 4
  • Hans-Helmut König
    • 8
  • Wolfgang Maier
    • 5
  • Horst Bickel
    • 6
  • Jochen Werle
    • 9
  • Siegfried Weyerer
    • 9
  • For the AgeCoDe study group
  1. 1.Institute of Social Medicine, Occupational Health and Public Health, Public Health Research UnitUniversity of LeipzigLeipzigGermany
  2. 2.Institute of Social Medicine, Occupational Health and Public HealthUniversity of LeipzigLeipzigGermany
  3. 3.Institute for BiometricsHannover Medical SchoolHannoverGermany
  4. 4.Department of Primary Medical CareUniversity Medical Center Hamburg-EppendorfHamburgGermany
  5. 5.Department of PsychiatryUniversity of BonnBonnGermany
  6. 6.Department of PsychiatryTechnical University of MunichMunichGermany
  7. 7.Department of General PracticeUniversity Medical CentreDüsseldorfGermany
  8. 8.Department of Medical Sociology and Health EconomicsUniversity Medical Center Hamburg-EppendorfHamburgGermany
  9. 9.Central Institute for Mental HealthMannheimGermany

Personalised recommendations