Advertisement

Fluid signature of the shear zone–controlled Veio de Quartzo ore body in the world-class BIF-hosted Cuiabá gold deposit, Archaean Rio das Velhas greenstone belt, Brazil: a fluid inclusion study

  • Carolin KresseEmail author
  • Lydia M. Lobato
  • Rosaline C. Figueiredo e Silva
  • Steffen G. Hagemann
  • David Banks
  • André L. A. Vitorino
Article
  • 76 Downloads

Abstract

The world-class Cuiabá gold deposit of the Archaean Rio das Velhas greenstone belt in Brazil is hosted in banded iron formation containing carbonaceous matter and carbonate, within the reclined, isoclinal Cuiabá fold. Mineralised quartz veins are hosted in andesite in the stratigraphic footwall of the banded iron ores and form some of the more recently discovered ore bodies. Fluid inclusion data of the quartz vein–associated “Veio de Quartzo” ore body are obtained from four quartz types (Qz1, Qz2, Qz3, Qz5) in gold-mineralised V1 shear vein and V2 extensional veins, barren V3 extensional vein array, and V4 breccia-style veins, all developed during the Archaean D1 event. Three fluid types are distinguished: (i) aqueous fluids of low salinity (1.8–3.8 wt% NaCl equiv), homogenisation (into liquid) at 220 to 230 °C; (ii) aqueous fluids of moderate salinity (5.3–12.7 wt% NaCl equiv), and homogenisation at 250 to 290 °C; and (iii) aqueous-carbonic fluids of moderate salinity (6.0–15.1 wt% NaCl equiv), with 30–91 mol% CO2, 8–41 mol% CH4 and up to 28 mol% N2 and decrepitation (into vapour) at 280 to 310 °C. Based on an independent pressure estimate, a pressure correction was applied to aqueous fluid inclusions, resulting in minimum trapping temperatures at 360 °C for V1 veins, 330 °C for V2 veins, 300 °C for V3 veins and 270 °C for the late-stage V4 veins. Ion chromatography analyses reveal a Br/Cl ratio of 0.7 × 10−3 in Qz1-V1, from 1.4 to 1.5 × 10−3 in Qz2-V2, 0.3 to 0.4 × 10−3 in Qz3-V3 and 0.7 to 0.9 × 10−3in Qz5-V4 veins. Zinc, Pb and Cu are relatively enriched with ~ 100 to 1000 ppm in aqueous and aqueous-carbonic fluid inclusion assemblages in all vein and quartz types, which is similar to other orogenic gold deposits hosted in the Rio das Velhas greenstone belt. The fluid inclusion data are consistent with a model invoking a metamorphic origin for the mineralising fluid. A two-step model of hydrothermal fluid flow and gold enrichment is suggested to have developed during the Archaean D1 event, with an early, aqueous-carbonic fluid pulse of relatively high temperature (from V1 up to V3) and an evolved, aqueous-carbonic fluid pulse of lower temperature (V4, breccia-style veins). The Rio das Velhas greenstone belt is dominated by regionally metamorphosed metasedimentary rocks, resulting in a complex hydrothermal fluid evolution and related gold mineralisation such as the shear zone–controlled Veio de Quartzo ore body.

Notes

Acknowledgments

We thank AngloGold Ashantifor technical and logistic support during field work. Special thanks are due to the staff at the Cuiabá mine, in particular, Frederico Lana Figueiredo. We acknowledge Maria Sylvia Dantas, F. Javier Rios, at the Centro de Desenvolvimento da Tecnologia Nuclear as well as Luis Garcia and Márcio M. da Silva Jr. at the Centro de Microscopia at the Federal University of Minas Gerais for analytical support. We acknowledge comments on the manuscript by Vassily Khouri and Breno S. Martins. We thank two reviewers and the associated editor whose comments and suggestions improved an earlier version of the manuscript.

Funding information

This study was made possible by research grants from the Conselho Nacional de Pesquisa Científica e Tecnológica to L.M. Lobato and R.C. Figueiredo e Silva. AngloGold Ashanti provided additional financial supported for the research.

Supplementary material

126_2019_941_Fig13_ESM.png (1.7 mb)
ESM 1

Photographs of mineralised host rocks at Cuiabá. a Sampled drill core section of sulfidised andesite (Level 17 of the Fonte Grande Sul ore body, drill core 03A, 1414.70–1414.84). b Sampled drill core section of sulfidised carbonaceous pelite (Level 17 of the Fonte Grande Sul ore body, drill core 009, 1378.24–1378.40). c Sampled drill core section of sulfidised BIF ((Level 17 of the Fonte Grande Sul ore body, drill core 03A, 1619.6–1619.85). d Stope view of sulfidised BIF (Level 15, Galinheiro ore body) (PNG 1737 kb)

126_2019_941_MOESM1_ESM.tif (7.8 mb)
High Resolution Image (TIF 7953 kb)
126_2019_941_MOESM2_ESM.jpg (18.1 mb)
ESM 2 Examples of Representative FIAsof V3 and V4 vein types of theVeio de Quartzoore body.a-c Qz3-V3 extensional vein arrays displaying an internal trail of two-phase, aqueous fluid inclusions (FIA 6) and two-phase, isolated aqueous-carbonic fluid inclusion (FIA 4B). d-g Qz5-V4 late-stage veins, showing two phase, grouped, aqueous fluid inclusions (FIA 12A),individual aqueous-carbonic fluid inclusions (FIA 12B) and two phase, grouped, aqueous fluid inclusions (FIA 14). Photomicrographs taken under transmitted light (JPG 18573 kb)
126_2019_941_Fig14_ESM.png (204 kb)
ESM 3

Raman spectra of individual fluid inclusions. a Raman spectra of FIAs trapped in Qz1-V1 shear veins. b Raman spectra of FIAs trapped in Qz3-V3 extensional vein arrays (PNG 204 kb)

126_2019_941_MOESM3_ESM.tif (65.2 mb)
High Resolution Image (TIF 66812 kb)
126_2019_941_MOESM4_ESM.docx (14 kb)
ESM 4 Arsenic and gold composition (in ppm) of aqueous fluid inclusions trapped in quartz of V1 shear, V2 extensional and V4 late-stage veins measured by laser ablation-inductively coupled plasma-mass spectroscopy (DOCX 14 kb)
126_2019_941_MOESM5_ESM.docx (30 kb)
ESM 5 Average laser ablation-inductively coupled plasma-mass spectroscopy concentration data (in ppm) for aqueous and aqueous-carbonic FIAs trapped in quartz (Qz1, Qz2, Qz3 and Qz5) of the andesite hosted shear and extensional quartz veins, Veio de Quartzo ore body (DOCX 30 kb)

References

  1. Allan MM, Yardley BW, Forbes LJ, Shmulovich KI, Banks DA, Shepherd TJ (2005) Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. Am Min 90:1767–1775CrossRefGoogle Scholar
  2. Andersen T, Austrheim H, Burke EAJ, Elvevold S (1993) N2 and CO2 in deep crustal fluids: evidence from the Caledonides of Norway. Chem Geol 108:113–132CrossRefGoogle Scholar
  3. Anderson MR, Rankin AH, Spiro B (1992) Fluid mixing in the generation of mesothermal gold mineralisation in the Transvaal Sequence, Transvaal, South Africa. Eur J Mineral 4:933–948CrossRefGoogle Scholar
  4. AngloGold Ashanti (2018) Resources and Reserves Annual Report 2018, Cuiabá Mine https://www.anglogoldashanti.com/investors/annual-reports/
  5. Anhaeusser CR (2014) Archean greenstone belts and associated granitic rocks–a review. J Afr Earth Sci 100:684–732CrossRefGoogle Scholar
  6. Babinski MF, Chemale JR, Van Schmus WR (1991) Geocronologia Pb/Pb em rochas carbonáticas do Supergrupo Minas, Quadrilátero Ferrífero, Minas Gerais. Congresso Brasil Geoquimica 3:628–631Google Scholar
  7. Baltazar O, Zucchetti M (2007) Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the setting of gold deposits. Ore Geol Rev 32:471–499CrossRefGoogle Scholar
  8. Bodnar R, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions: fluid inclusions in minerals: methods and applications, Short course, pp 117–130Google Scholar
  9. Bodnar RJ, Lecumberri-Sanchez P, Moncada D, Steele-MacInnis M (2014) Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 119–142Google Scholar
  10. Böhlke JK, Irwin JJ (1992) Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225CrossRefGoogle Scholar
  11. Borisenko A (1977) Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Sov Geol Geophys 18:11–18Google Scholar
  12. Brown PE, Hagemann SG (1995) MacFlinCor and its application to fluids in Archean lode-gold deposits. Geochim Cosmochim Acta 59:3943–3952CrossRefGoogle Scholar
  13. Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158CrossRefGoogle Scholar
  14. Cabral AR, Zeh A, Koglin N, Gomes AAS, Viana DJ, Lehmann B (2012) Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: depositional U Pb age of zircon from a metavolcanic layer. Precambrian Res 204-205:40–45CrossRefGoogle Scholar
  15. Craw D, MacKenzie D (2016) Macraes orogenic gold deposit (New Zealand): origin and development of a world class gold mine. Springer.  https://doi.org/10.1007/978-3-319-35158-2_7 Google Scholar
  16. De Ronde CEJ, Der Channer DM, Spooner ETC (1997) Archaean fluids. In: De Wit MJ, Ashwal LD (eds) Greenstone belts. Clarendon Press, Oxford, pp 309–335Google Scholar
  17. Diamond LW (1993) Post-metamorphic gold-quartz veins from NW Italy: the composition and origin of the ore fluid. Mineral Mag 57:407–422CrossRefGoogle Scholar
  18. Dorr JVN (1969) Physiographic, stratigraphic, and structural development of the Quadrilátero Ferrífero. Minas Gerais, Brazil, pp 2330–7102Google Scholar
  19. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758CrossRefGoogle Scholar
  20. Fu B, Kendrick MA, Fairmaid AM, Phillips D, Wilson CJ, Mernagh TP (2012) New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib Mineral Petrol 163:427–447CrossRefGoogle Scholar
  21. Fusswinkel T, Wagner T, Sakellaris G (2017) Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland): constraints from LA-ICPMS fluid inclusion microanalysis. Chem Geol 450:96–121CrossRefGoogle Scholar
  22. Gaboury D (2013) Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments? Insight from volatiles in fluid inclusions. Geology 41:1207–1210CrossRefGoogle Scholar
  23. Gaboury D (2019) Parameters for the formation of orogenic gold deposits. Appl Earth Sci (Trans Inst Min Metall B).  https://doi.org/10.1080/25726838.2019.1583310 CrossRefGoogle Scholar
  24. Garofalo PS, Fricker MB, Günther D, Bersani D, Lottici PP (2014) Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits. Geol Soc London Spec Publ 402:71–102CrossRefGoogle Scholar
  25. Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos 233:2–26CrossRefGoogle Scholar
  26. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM short course 31. The Mineralogical Association of Canada, TulsaCrossRefGoogle Scholar
  27. Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70:5356–5370CrossRefGoogle Scholar
  28. Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann S, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27CrossRefGoogle Scholar
  29. Groves DI, Santosh M, Deng J, Wang Q, Yang L, Zhang L (2019) A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineral Deposita:1–18.  https://doi.org/10.1007/s00126-019-00877-5
  30. Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BW (2008) Appendix A6: SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral Assoc Can Short Course 40:328–333Google Scholar
  31. Hagemann SG, Brown PE (1996) Geobarometry in Archean lode-gold deposits. Eur J Mineral 8:937–960CrossRefGoogle Scholar
  32. Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits. Rev Econ Geol 13:9–68Google Scholar
  33. Helmstaedt H, Padgham WA (1986) Stratigraphic and structural setting of gold-bearing shear zones in the Yellowknife greenstone belt. Can Inst Min 38:322–345Google Scholar
  34. Ho SE, Groves DI, Phillips GN (1985) Fluid inclusions as indicators of the nature and source of fluids and ore depositional conditions for Archaean gold deposits of the Yilgam Block, Western Australia. Trans Geol S S Afr 85:149–158Google Scholar
  35. Jacobs GK, Kerrick DM (1981) Methane: an equation of state with application to the ternary system H2O-CO2-CH4. Geochim Cosmochim Acta 45:607–614CrossRefGoogle Scholar
  36. Jambon A, Déruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117CrossRefGoogle Scholar
  37. Klemm L, Pettke T, Graeser S, Mullis J, Kouzmanov K (2004) Fluid mixing as the cause of sulphide precipitation at Albrunpass, Binn Valley, Central Alps. Swiss Bull Mineral Petrol 84:189–212Google Scholar
  38. Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ Geol 102:1021–1045CrossRefGoogle Scholar
  39. Kojonen K, Johanson B, O’Brien HE, Pakkanen L (1993) Mineralogy of gold occurrences in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Spec Pap Geological Survey of Finland 17:233–271Google Scholar
  40. Kresse C (2018) Isotopic, fluid inclusion and LA-ICP-MS studies on the world-class BIF hosted Cuiabá gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, MG: implications for the mineralizing fluid reservoirs. Dissertation, Universidade Federal de Minas GeraisGoogle Scholar
  41. Kresse C, Lobato LM, Hagemann SG, Figueiredo e Silva RC (2018) Sulfur isotope and metal variations in sulfides in the BIF-hosted orogenic Cuiabá gold deposit, Brazil: implications for the hydrothermal fluid evolution. Ore Geol Rev 98:1–27CrossRefGoogle Scholar
  42. Ladeira EA (1991) Genesis of gold in QuadriláteroFerrífero: a remarkable case of permanency, recycling and inheritance: a tribute to DjalmaGuimarães, Pierre Routhier and Hans Ramberg. Brazil Gold 91:11–30Google Scholar
  43. Large RR, Bull SW, Maslennikov VVA (2011) Carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358CrossRefGoogle Scholar
  44. Leisen M, Boiron MC, Richard A, Dubessy J (2012) Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICP-MS analysis: implications for the origin of salinity in crustal fluids. Chem Geol 330:197–206CrossRefGoogle Scholar
  45. Lobato LM, Vieira FWR, Ribeiro-Rodrigues LC, Pereira LM, Menezes MG, Junqueira PA, Pereira SL (1998) Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima Group, Quadrilátero Ferrífero: part II, the Archean mesothermal gold-bearing hydrothermal system. Braz J Geol 28:355–366Google Scholar
  46. Lobato LM, Ribeiro-Rodrigues LC, Zucchetti M, Noce CM, Baltazar O, da Silva L, Pinto C (2001a) Brazil’s premier gold province. Part I: the tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36:228–248CrossRefGoogle Scholar
  47. Lobato LM, Ribeiro-Rodrigues LC, Vieira F (2001b) Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36:249–277CrossRefGoogle Scholar
  48. Lobato LM, Ribeiro-Rodrigues LC, Costa MNS, Martins R, Lehne E, Alves JV, Tassinari CG, Vieira FWR, Biasi EE, Silva RCF, Pereira VCA, Noce CM (2001c) Geologia do depósito de ouro Cuiabá, Quadrilátero Ferrífero, Minas Gerais, Caracterização de depósitos auríferos em distritos minerais brasileiros, Departamento Nacional da Produção Mineral/Agência para o Desenvolvimento Tecnológico da Indústria Mineral Brasileira, pp 3–77Google Scholar
  49. Lobato LM, Santos JOS, McNaughton N, Fletcher I, Noce CM (2007) U-Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:674–680CrossRefGoogle Scholar
  50. Lobato LM, Renger FE, Silva RCF, Rosière CA, Baars FJ, Rolim VK (2014) Metalogênese do setor meridional do Cráton São Francisco. In: Silva MG, MBR N, Jost H, Kuyumjian RM (eds) Metalogênese das Províncias Tectônicas Brasileiras. Companhia de Pesquisas de Recursos Minerais, Brasília, Brazil, Belo Horizonte, pp 119–140Google Scholar
  51. Lüders V, Romer RL, Cabral AR, Schmidt C, Banks DA, Schneider J (2005) Genesis of itabirite-hosted au-Pd-Pt-bearing hematite-(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U-Pb systematics. Mineral Deposita 40:289–306CrossRefGoogle Scholar
  52. Machado N, Schrank A, Abreu FD, Knauer LG, Almeida-Abreu PA (1989) Resultados preliminares da geocronologia U-Pb na Serra do Espinhaço Meridional. Boletim do Núcleo Minas Gerais-SBG 10:171–174Google Scholar
  53. Marsala A, Wagner T, Wälle M (2013) Late-metamorphic veins record deep ingression of meteoric water: a LA-ICPMS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chem Geol 351:134–153CrossRefGoogle Scholar
  54. Martins BS, Lobato LM, Rosière CA, Hagemann SG, Santos JOS, Villanova FLDSP, Silva RCF, Ávila Lemos LH (2016) The Archean BIF-hosted Lamego gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero: evidence for Cambrian structural modification of an Archean orogenic gold deposit. Ore Geol Rev 72:963–988CrossRefGoogle Scholar
  55. McCuaig TC, Kerrich R (1998) P-T-t-deformation and fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453CrossRefGoogle Scholar
  56. Mernagh TP, Bastrakov EN, Zaw K, Wygralak AS, Wyborn LAI (2007) Comparison of fluid inclusion data and mineralization processes for Australian orogenic gold and intrusion-related gold systems. Acta Petrol Sin 23:21–32Google Scholar
  57. Morales MJ, Silva RCF, Lobato LM, Gomes SD, Gomes CC, Banks DA (2016) Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geol Rev 72:510–531CrossRefGoogle Scholar
  58. Moreira H, Lana C, Nalini HA (2016) The detrital zircon record of an Archean convergent basin in the southern São Francisco Craton, Brazil. Precambrian Res 275:84–99CrossRefGoogle Scholar
  59. Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth's crust. Chem Geol 147:201–216CrossRefGoogle Scholar
  60. Noce CM (2013) Geochronology of the Quadrilátero Ferrífero: a review. Rev Geonomos 8:15–23Google Scholar
  61. Noce CM, Zuccheti M, Baltazar O, Armstrong R, Dantas E, Renger FE, Lobato LM (2005) Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil): U-Pb zircon dating of volcaniclastic greywackes. Precambrian Res 141:67–82CrossRefGoogle Scholar
  62. Noce CM, Tassinari CC, Lobato LM (2007) Geochronological framework of the Quadrilátero Ferrífero, with emphasis on the age of gold mineralization hosted in Archean greenstone belts. Ore Geol Rev 32:500–510CrossRefGoogle Scholar
  63. Oliver NH, Thomson B, Freitas-Silva FH, Holcombe RJ, Rusk B, Almeida BS, Faure K, Davidson GR, Esper EL, Guimarães PJ, Dardenne MA (2015) Local and regional mass transfer during thrusting, veining, and boudinage in the genesis of the giant shale-hosted Paracatu gold deposit, Minas Gerais, Brazil. Econ Geol 110:1803–1834CrossRefGoogle Scholar
  64. Passchier C (2001) Flanking structures. J Struct Geol 23:951–962CrossRefGoogle Scholar
  65. Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatilization model. J Metamorph Geol 28:689–718CrossRefGoogle Scholar
  66. Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R, Brewer TS (2006) Sources of metals and fluids in orogenic gold deposits: insights from the Otago and Alpine Schists, New Zealand. Econ Geol 101:1525–1546CrossRefGoogle Scholar
  67. Potter RW (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. J Res U S Geol Surv 5:503–607Google Scholar
  68. Ramboz C, Pichavant M, Weisbrod A (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chem Geol 37:29–48CrossRefGoogle Scholar
  69. Rauchenstein-Martinek K, Wagner T, Wälle M, Heinrich CA (2014) Gold concentrations in metamorphic fluids: a LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem Geol 385:70–83CrossRefGoogle Scholar
  70. Rauchenstein-Martinek K, Wagner T, Wälle M, Heinrich CA, Arlt T (2016) Chemical evolution of metamorphic fluids in the Central Alps, Switzerland: insight from LA-ICP-MS analysis of fluid inclusions. Geofluids 16:877–908CrossRefGoogle Scholar
  71. Ribeiro Y, Silva RCF, Lobato LM, Lima LC, Rios FJ, Hagemann SG, Cliff J (2015) Fluid inclusion and sulfur and oxygen isotope studies on quartz-carbonate-sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 67:11–33CrossRefGoogle Scholar
  72. Ribeiro-Rodrigues LC(1998) Gold mineralization in Archean banded iron-formation of the QF, Minas Gerais, Brazil-The Cuiabá Mine. Dissertation, RTWH AachenGoogle Scholar
  73. Ribeiro-Rodrigues LC, de Oliveira CG, Friedrich G (2007) The Archean BIF-hosted Cuiabá Gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:543–570CrossRefGoogle Scholar
  74. Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev Econ Geol 13:141–162Google Scholar
  75. Robert F, Poulsen KH (2001) Vein formationand deformation in greenstone gold deposits, in Richards JP, Tosdal RM, Structural Controls on Ore Genesis: Society of Economic Geologists, Rev Econ Geol 14:111–155Google Scholar
  76. Roedder E (1984) Fluid inclusions: Washington. DC, MSA. Rev Mineral 12:644Google Scholar
  77. Schindler C, Hagemann SG, Banks D, Mernagh T, Harris AC (2016) Magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related Telfer gold-copper deposit, Paterson Orogen, Western Australia: pressure-temperature-composition constraints on the ore-forming fluids. Econ Geol 111:1099–1126CrossRefGoogle Scholar
  78. Schrank A, Machado N (1996) Idades U-Pb em monazitas e zircões das minas de Morro Velho e Passagem de Mariana-Quadrilátero Ferrífero (MG). In SBG Congresso Brasileiro de Geologia 39:470–472Google Scholar
  79. Seo JH, Guillong M, Heinrich CA (2012) Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Econ Geol 107:333–356CrossRefGoogle Scholar
  80. Spear FS (1995) Metamorphic phase equilibria and pressure-temperature-time paths, Washington. MinSoc Am, pp 799Google Scholar
  81. Sterner SM, Bodnar RJ (1984) Synthetic fluid inclusions in natural quartz I. Compositional types synthesised and applications to experimental geochemistry. Geochim Cosmochim Acta 48:2659–2668CrossRefGoogle Scholar
  82. Taylor BE (1987) Stable isotope geochemistry of ore-forming fluids. Min Assoc Can, Short Course Handbook 13:337–445Google Scholar
  83. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, pp 312Google Scholar
  84. Toledo C (1997) Controle estrutural da mineralizacão aurifera na mina de Cuiabá, setor noroeste do Greenstone Belt Rio das Velhas, Quadrilátero Ferrífero. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  85. Vial D (1980) Mapeamento Geologico do Nivel3 da mina de Cuiabá, Mineração Morro Velho. Internal ReportGoogle Scholar
  86. Vieira FWR (1988) Processos epigenéticos da formação dos depósitos auríferos e zonas de alteração hidrotermal do Grupo Nova Lima, Quadrilátero Ferrífero, Minas Gerais. SBG Congresso Brasileiro da Geologia, Belém 1:76–86Google Scholar
  87. Vieira FWR (1991) Texturesand processes ofhydrothermalalterationandmineralization in the Nova Lima Group, Minas Gerais, Brazil. Brazil Gold 91:319–327Google Scholar
  88. Vitorino LA (2017) Mineralização aurífera associada aos veios quartzo-carbonáticos hospedados na unidade máfica basal da jazida Cuiabá, Greenstone belt Rio das Velhas, Minas Gerais, Brasil. Dissertation, Universidade Federal de Minas GeraisGoogle Scholar
  89. Wagner T, Fusswinkel T, Wälle M, Heinrich CA (2016) Microanalysis of fluid inclusions in crustal hydrothermal systems using laser ablation methods. Elements 12:323–328CrossRefGoogle Scholar
  90. Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272CrossRefGoogle Scholar
  91. Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE, Appold MS (2009) Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323:764–767CrossRefGoogle Scholar
  92. Xavier RP, Toledo CLB, Taylor B, Schrank A (2000) Fluid evolution and gold deposition at the Cuiabá mine, SE Brazil: fluid inclusions and stable isotope geochemistry of carbonates. Rev Bras Geogr 30:337–341Google Scholar
  93. Yardley BWD (2005) Metal concentrations in crustal fluids and their relationship to ore formation, 100th anniversary special paper. Econ Geol 100:613–632Google Scholar
  94. Yardley BWD, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3:1–127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.British Geological SurveyEnvironmental Science CentreNottinghamUK
  2. 2.Instituto de GeociênciasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Centre for Exploration Targeting, School of Earth and Environmental SciencesUniversity of Western AustraliaPerthAustralia
  4. 4.School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations