Advertisement

Lithium concentrations and isotope signatures of Palaeozoic basement rocks and Cenozoic volcanic rocks from the Central Andean arc and back-arc

  • Anette MeixnerEmail author
  • Carisa Sarchi
  • Friedrich LucassenEmail author
  • Raúl Becchio
  • Pablo J. Caffe
  • Jan Lindsay
  • Martin Rosner
  • Simone A. Kasemann
Article

Abstract

We investigate the Li isotope composition and the Li concentrations of metamorphic and sedimentary rocks of the Palaeozoic (Pz) basement in the Central Andes and follow the trace of the Li in the Cenozoic volcanic rocks at the active continental margin. The average Li isotope composition of Pz-basement closely resembles global averages of upper crustal rocks with overlapping, but higher average Li content in the Pz-basement. Lithium isotope composition and content in the Cenozoic volcanic rocks of the Central Volcanic Zone (CVZ) range from mantle-like signatures to Pz-basement compositions with high δ7Li values and high Li contents. Evolutionary trends of the Li isotope composition in the CVZ volcanic rocks can be explained by assimilation of the Pz-basement. At a margin-wide scale, the abundance of Li in the CVZ volcanic rocks is higher than that of the Cenozoic volcanic rocks of the active Andean arc north and south of the CVZ. The CVZ volcanic and Pz-basement rocks are considered to be the primary source of Li in world-class Li-deposits in evaporates of the Altiplano-Puna high plateau and its western slope between ca 27° and 20° S. These deposits define the so-called “Lithium-Triangle”, between southern Bolivia, NW Argentina and NE Chile. The pivotal processes of extraction of Li from its primary rock sources and of Li migration from the source rocks to the deposits still await detailed investigation.

Keywords

Central Andes Palaeozoic basement Cenozoic volcanic rocks Lithium isotopes Lithium deposits 

Notes

Acknowledgements

SAK thanks Ricardo Alonso, Universidad Nacional de Salta and Ben Heit, GeoForschungsZentrum Potsdam for support of the field work. Sample CAV-10-5 was collected by Fatima Quiroga, Universidad Nacional de Salta. We thank Horst Marschall and Gerhard Wörner for their reviews, which improved the focus of the manuscript and Bernd Lehmann for the editorial handling.

Funding information

CS and PJC were funded by ANPCyT, CONICET and UNJu (PICT-V-2014 3654; PIO 0010CO).

Supplementary material

126_2019_915_MOESM1_ESM.docx (110 kb)
ESM 1 (DOCX 97 kb)
126_2019_915_MOESM2_ESM.xls (51 kb)
ESM 2 (XLS 51 kb)
126_2019_915_MOESM3_ESM.xls (35 kb)
ESM 3 (XLS 35 kb)
126_2019_915_MOESM4_ESM.xls (28 kb)
ESM 4 (XLS 28 kb)

References

  1. Adams CJ, Miller H, Aceñolaza FG, Toselli AJ, Griffin WL (2011) The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: detrital zircon U–Pb ages from metasediments in Northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Res 19:71–83CrossRefGoogle Scholar
  2. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano–Puna plateau of the Central Andes. Annu Rev Earth Pl Sci 27:139–174CrossRefGoogle Scholar
  3. Alonso RN, Helvacı C, Sureda RJ, Viramonte JG (1988) A new tertiary borax deposit in the Andes. Mineral Deposita 23:299–305CrossRefGoogle Scholar
  4. Alonso RN, Jordan TE, Tabbutt KT, Vandervoort DS (1991) Giant evaporite belts of the Neogene Central Andes. Geology 19:401–404CrossRefGoogle Scholar
  5. Arancibia G, Matthews SJ, Pérez de Arce C (2006) K-Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, northern Chile: tectonic and climatic relations. J Geol Soc 163:107–118CrossRefGoogle Scholar
  6. Bahlburg H, Vervoort JD, DuFrane SA, Bock B, Augustsson C (2009) Timing of accretion and crustal recycling at accretionary orogens: insights learned from the western margin of South America. Earth Sci Rev 97:227–253CrossRefGoogle Scholar
  7. Bahlburg H, Berndt J, Gerdes A (2016) The ages and tectonic setting of the Faja Eruptiva de la Puna oriental, Ordovician, NW Argentina. Lithos 256–257:41–54CrossRefGoogle Scholar
  8. Benson TR, Coble MA, Rytuba JJ, Mahood GA (2017) Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat Commun 8:270.  https://doi.org/10.1038/s41467-017-00234-y CrossRefGoogle Scholar
  9. Bock B, Bahlburg H, Wörner G, Zimmermann U (2000) Tracing crustal evolution in the southern Central Andes from the late Precambrian to Permian using Nd and Pb isotopes. J Geol 108:515–535CrossRefGoogle Scholar
  10. Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35(6):L06 403CrossRefGoogle Scholar
  11. Boschetti T, Cortecci G, Barbieri M, Mussi M (2007) New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 7:33–50CrossRefGoogle Scholar
  12. Brandmeier M, Wörner G (2016) Compositional variations of ignimbrite magmas in the Central Andes over the past 26 ma — a multivariate statistical perspective. Lithos 262:713–728CrossRefGoogle Scholar
  13. Burns DH, de Silva SL, Tepley F, Schmitt AK, Loewen MW (2015) Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile. Earth Planet Sci Lett 422:75–86CrossRefGoogle Scholar
  14. Büttner SH, Glodny J, Lucassen F, Wemmer K, Erdmann S, Handler R, Franz G (2005) Ordovician metamorphism and plutonism in the sierra de Quilmes metamorphic array: implications for the tectonic setting of the northern sierras Pampeanas (NW Argentina). Lithos 83:143–181CrossRefGoogle Scholar
  15. Caffe PJ, Trumbull RB, Coira BL, Romer RL (2002) Petrogenesis of early Neogene magmatism in the northern Puna; implications for magma genesis and crustal processes in the central Andean plateau. J Petrol 43:907–942CrossRefGoogle Scholar
  16. Casquet C, Dahlquist JA, Verdecchia SO, Baldo EG, Galindo C, Rapela CW, Pankhurst RJ, Morales MM, Murra JA, Fanning CM (2018) Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth Sci Rev 177:209–225CrossRefGoogle Scholar
  17. Chong G (1988) The Cenozoic saline deposits of the Chilean Andes between 18° and 27° south latitude. In: Bahlburg H, Breitkreuz Ch, Giese P (Eds) the southern Central Andes. Lecture Notes Earth Sci 17:137–151Google Scholar
  18. Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth Sci Rev 18:303–332CrossRefGoogle Scholar
  19. Coira B, Kay SM, Viramonte J (1993) Upper Cenozoic magmatic evolution of the argentine Puna – a model for changing subduction geometry. Int Geol Rev 35:677–720CrossRefGoogle Scholar
  20. Corenthal LG, Boutt DF, Hynek SA, Munk LA (2016) Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys Res Lett 43:8017–8025CrossRefGoogle Scholar
  21. Davidson JP, Harmon RS, Wörner G (1991) The source of central Andean magmas, some considerations. Spec Pap Geol Soc Am 265:233–245Google Scholar
  22. Davidson JP, de Silva SL (1995) Late Cenozoic magmatism of the Bolivian Altiplano. Contrib Mineral Petrol 119:387–408CrossRefGoogle Scholar
  23. DeCelles PG, Ducea MN, Carrapa B, Kapp PA eds (2015) Geodynamics of a cordilleran orogenic system: the Central Andes of Argentina and northern Chile. Geol Soc Am Mem 212. doi. https://doi.org/10.1130/9780813712123
  24. Delph JR, Ward KM, Zandt G, Ducea MN, Beck SL (2017) Imaging a magma plumbing system from MASH zone to magma reservoir. Earth Planet Sci Lett 457:313–324CrossRefGoogle Scholar
  25. de Silva SL (1989) Altiplano–Puna volcanic complex of the Central Andes. Geology 17:1102–1106CrossRefGoogle Scholar
  26. de Silva SL, Kay SM (2018) Turning up the heat: high-flux magmatism in the Central Andes. Elements 14:245–250CrossRefGoogle Scholar
  27. Dietrich A, Lehmann B (2000) Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Econ Geol 95:313–326CrossRefGoogle Scholar
  28. Ducea MN, Otamendi J, Bergantz GW, Jianu D, Petrescu L (2015) The origin and petrologic evolution of the Ordovician Famatinian- Puna arc, in: DeCelles PG, Ducea MN, Carrapa B, Kapp PA (Eds) geodynamics of a cordilleran orogenic system: the Central Andes of Argentina and northern Chile. Geol Soc Am Mem 212:125–138Google Scholar
  29. Egenhoff SO, Lucassen F (2003) Chemical and isotopic composition of lower to upper Ordovician sedimentary rocks (Central Andes /South Bolivia): implications for their source. J Geol 111:487–497CrossRefGoogle Scholar
  30. Escayola MP, van Staal CR, Davis WJ (2011) The age and tectonic setting of the Puncoviscana formation in northwestern Argentina: an accretionary complex related to early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. J S Am Earth Sci 32:438–459CrossRefGoogle Scholar
  31. Flesch GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom 12:265–272Google Scholar
  32. Francis PW, Hawkesworth CJ (1994) Late Cenozoic rates of magmatic activity in the Central Andes and their relationship to continental crust formation and thickening. J Geol Soc Lond 151:845–854CrossRefGoogle Scholar
  33. Francis PW, Sparks RSJ, Hawkesworth CJ, Thorpe RS, Pyle DM, Tait SR, Mantovani MS, McDermott F (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galán caldera, Northwest Argentina. Geol Mag 126:515–547CrossRefGoogle Scholar
  34. Freymuth H, Brandmeier M, Wörner G (2015) The origin and crust/mantle mass balance of central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes. Contrib Mineral Petrol 169:1–24CrossRefGoogle Scholar
  35. Godfrey LV, Chan L-H, Alonso RN, Lowenstein TK, McDonough WF, Houston J, Li J, Bobst A, Jordan TE (2013) The role of climate in the accumulation of lithium-rich brine in the Central Andes. Appl Geochem 38:92–102CrossRefGoogle Scholar
  36. Grocke SB, de Silva SL, Iriarte R, Lindsay JM, Cottrell E (2017) Catastrophic caldera-forming (CCF) monotonous silicic magma reservoirs: geochemical and petrological constraints on heterogeneity, magma dynamics, and eruption dynamics of the 3,49 ma Tara Supereruption, Guacha II caldera, SW Bolivia. J Petrol 58:227–260CrossRefGoogle Scholar
  37. Hansen CT, Meixner A, Kasemann SA, Bach W (2017) New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations. Geochim Cosmochim Acta 217:51–79CrossRefGoogle Scholar
  38. Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: A three-dimensional model of global subduction zone geometries. J Geophys Res 117:B01302.  https://doi.org/10.1029/2011JB008524 CrossRefGoogle Scholar
  39. Heit B, Bianchi M, Yuan X, Kay SM, Sandvol E, Kumar P, Kind R, Alonso RN, Brown LD, Comte D (2014) Structure of the crust and the lithosphere beneath the southern Puna plateau from teleseismic receiver functions. Earth Planet Sci Lett 385:1–11CrossRefGoogle Scholar
  40. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  41. Hofstra AH, Todorov TI, Mercer CN, Adams DT, Marsh EE (2013) Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines. Econ Geol 108:1691–1701CrossRefGoogle Scholar
  42. Höppner N, Lucassen F, Chiessi CM, Sawakuchi AO, Kasemann SA (2018) Holocene provenance shift of suspended particulate matter in the Amazon River basin. Quater Sci Rev 190:66–80CrossRefGoogle Scholar
  43. Isacks B (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res Solid 93:3211–3231CrossRefGoogle Scholar
  44. Kasemann SA, Erzinger J, Franz G (2000) Boron recycling in the continental crust of the Central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contrib Mineral Petrol 140:328–343CrossRefGoogle Scholar
  45. Kasemann SA, Meixner A, Erzinger J, Viramonte JG, Alonso RN, Franz G (2004) Boron isotope composition of geothermal fluids and borate minerals from Salar deposits (Central Andes/NW Argentina). J S Am Earth Sci 16:685–697CrossRefGoogle Scholar
  46. Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicator of continental lithospheric delamination beneath the argentine Puna plateau, Central Andes. J Geophys Res 99:24323–24339CrossRefGoogle Scholar
  47. Kay SM, Coira BL, Caffe PJ, Chen CH (2010) Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. J Vol Geoth Res 198:81–111CrossRefGoogle Scholar
  48. Keppler H (2017) Fluids and trace element transport in subduction zones. Am Mineral 102:5–20CrossRefGoogle Scholar
  49. Lehmann B, Dietrich A, Heinhorst J, Métrich N, Mosbah M, Palacios C, Schneider H-J, Wallianos A, Webster J, Winkelmann L (2000) Boron in the Bolivian tin belt. Mineral Deposita 35:223–232CrossRefGoogle Scholar
  50. Lindsay JM, Schmitt AK, Trumbull RB, de Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites and implications for contrasting eruption mechanisms. J Petrol 42:459–486CrossRefGoogle Scholar
  51. Liu XM, Rudnick RL (2011) Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. P Natl Acad Sci USA 108:20873–20880CrossRefGoogle Scholar
  52. López Steinmetz RL (2017) Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S. Mineral Deposita 52:35–50CrossRefGoogle Scholar
  53. López Steinmetz RL, Salvi S, Garcia MG, Peralta Arnold Y, Beziat D, Franco G, Constantini O, Cordoba F, Caffe PJ (2018) Northern Puna-scale survey of Li-brine deposits in the Andes of NW Argentina. J Geochem Explor 190:26–38CrossRefGoogle Scholar
  54. LSC Lithium Cooperation (2019) Preliminary Economic Assessment (PEA) - Pozuelos - Pastos Grandes Project NI 43–101 Technical Report Salta, Argentina January 2019 272 pages https://www.lsclithium.com/properties/Pozuelos/default.aspx. Accessed 04 Aug 2019
  55. Lucassen F, Becchio R, Wilke HG, Thirlwall MF, Viramonte J, Franz G, Wemmer K (2000) Proterozoic–Paleozoic development of the basement of the Central Andes (18°–26°)—a mobile belt of the south American craton. J S Am Earth Sci 13:697–715CrossRefGoogle Scholar
  56. Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke HG, Romer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin - the Central Andes between 21° and 27°S. Tectonophysics 341:195–223CrossRefGoogle Scholar
  57. Lucassen F, Becchio R (2003) Timing of high-grade metamorphism: early Palaeozoic U-Pb formation ages of titanite indicate long-standing high-T conditions at the western margin of Gondwana (Argentina, 26-29°S). J Metamorph Geol 21:649–662CrossRefGoogle Scholar
  58. Lucassen F, Kramer W, Bartsch V, Wilke H-G, Franz G, Romer RL, Dulski P (2006) Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18–27°S): indications for a uniform subarc mantle. Contrib Mineral Petrol 152:571–589CrossRefGoogle Scholar
  59. Lucassen F, Becchio R, Franz G (2011) The early Palaeozoic high grade metamorphism at the active continental margin of West Gondwana in the Andes (NW Argentina/N Chile). Int J Earth Sci (Geologische Rundschau) 100:445–463CrossRefGoogle Scholar
  60. Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182CrossRefGoogle Scholar
  61. Maro G, Caffe PJ, Romer RL, Trumbull RB (2017) Neogene mafic magmatism in the northern Puna plateau, Argentina: generation and evolution of a back-arc volcanic suite. J Petrol 58:1591–1618CrossRefGoogle Scholar
  62. Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim Cosmochim Ac 207:102–138CrossRefGoogle Scholar
  63. Moriguti T, Nakamura E (1998) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174CrossRefGoogle Scholar
  64. Munk LA, Hynek SA, Bradley DC, Boutt D, Labay K, Jochens H (2016) Lithium brines: a global perspective. Rev Econ Geol 18:339–365Google Scholar
  65. Munk LA, Boutt DF, Hynek SA, Moran BJ (2018) Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin. Chem Geol 493:37–57CrossRefGoogle Scholar
  66. Neukampf J, Ellis BS, Magna T, Laurent O, Bachmann O (2019) Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: The case of the Mesa Falls Tuff, Yellowstone. Chem Geol 506:175–186Google Scholar
  67. Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) (2006) The Andes. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  68. Ortiz A, Hauser N, Becchio R, Suzaño N, Nieves A, Sola A, Pimentel M, Reimold W (2017) Zircon U-Pb ages and Hf isotopes for the Diablillos intrusive complex, southern Puna, Argentina: crustal evolution of the lower Paleozoic Orogen, southwestern Gondwana margin. J S Am Earth Sci 80:316–339CrossRefGoogle Scholar
  69. Pankhurst RJ, Hervé FC, Mark Fanning CM, Calderón M, Niemeyer H, Griem-Klee S, Soto F (2016) The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes. Earth-Sci Rev 152:88–105Google Scholar
  70. Penniston-Dorland S, Liu XM, Rudnick RL (2017) Lithium isotope geochemistry. Rev Mineral Geochem 82:165–217CrossRefGoogle Scholar
  71. Peralta Arnold Y, Cabassi J, Tassi F, Caffe PJ, Vaselli O (2017) Fluid geochemistry of a deep-seated geothermal resource in the Puna plateau (Jujuy Province, Argentina). J Vol Geoth Res 338:121–134CrossRefGoogle Scholar
  72. Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339CrossRefGoogle Scholar
  73. Plank T, Langmuir CH (1998) The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  74. Quade J, Dettinger MP, Carrapa B, DeCelles P, Murray KE, Huntington KW, Cartwright A, Canavan RR, Gehrels G, Clementz M (2015) The growth of the central Andes, 22°S–26°S. In DeCelles PG, Ducea MN, Carrapa B, Kapp PA eds Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geol Soc Am Mem 212: https://doi.org/10.1130/2015.1212(15)
  75. Rapela CW, Pankhurst RJ, Casquet C, Dahlquist JA, Fanning CM, Baldo EG, Galindo C, Alasino PH, Ramacciotti CD, Verdecchia SO, Murra JA, Basei MAS (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth Sci Rev 187:259–285CrossRefGoogle Scholar
  76. Reutter K-J, Scheuber E, Wigger P (eds) (1994) Tectonics of the southern Central Andes. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  77. Reutter K-J, Munier K (2006) Digital Geological map of the Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  78. Richards JP, Ullrich T, Kerrich R (2006) The late Miocene–quaternary Antofalla volcanic complex, southern Puna, NW Argentina: protracted history, diverse petrology, and economic potential. J Volc Geoth Res 152:197–239CrossRefGoogle Scholar
  79. Risacher F, Fritz B (2009) Origin of salts and brine evolution of Bolivian and Chilean salars. Aquat Geochem 15:123–157CrossRefGoogle Scholar
  80. Risacher F, Fritz B, Hauser A (2011) Origin of components in Chilean thermal waters. J S Am Earth Sci 31:153–170CrossRefGoogle Scholar
  81. Risse A, Trumbull RB, Coira B, Kay SM, van den Bogaard P (2008) 40Ar/39Ar geochronology of basaltic volcanism in the back-arc region of the southern Puna plateau, Argentina. J S Am Earth Sci 26:1–15CrossRefGoogle Scholar
  82. Risse A, Trumbull RB, Kay SM, Coira B, Romer RL (2013) Multistage evolution of late Neogene mantle-derived magmas from the central Andes back-arc in the southern Puna Plateau of Argentina. J Petrol 54:1963–1995CrossRefGoogle Scholar
  83. Rissmann C, Leybourne M, Benn C, Christenson B (2015) The origin of solutes within the groundwaters of a high Andean aquifer. Chem Geol 396:164–181CrossRefGoogle Scholar
  84. Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosyst 4:doi. https://doi.org/10.1029/2002GC000438
  85. Ryan WBF, Carbotte SM, Coplan J, O'Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global Multi-Resolution Topography (GMRT) synthesis data set. Geochem Geophys Geosyst 10:doi. https://doi.org/10.1029/2008GC002332
  86. Sauzéat L, Rudnick RL, Chauvel C, Garcon M, Tang M (2015) New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet Sci Lett 428:181–192CrossRefGoogle Scholar
  87. Scheuber E, Bogdanic T, Jensen A, Reutter KJ (1994) Tectonic development of the North Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter KJ, Scheuber E, Wigger PJ eds Tectonics of the Southern Central Andes. Springer-Verlag, Heidelberg:7–22Google Scholar
  88. Schmitt AK, Kasemann S, Meixner A, Rhede D (2002) Boron in central Andean ignimbrites: implications for crustal boron cycles in an active continental margin. Chem Geol 183:333–347CrossRefGoogle Scholar
  89. Schnurr W, Trumbull RB, Clavero J, Hahne K, Siebel W, Gardeweg M (2007) Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27°S, 67 to 72°W. J Volc Geoth Res 166:17–46CrossRefGoogle Scholar
  90. Schnurr W, Risse A, Trumbull R, Munier K (2006) Digital geological map of the southern and central Puna plateau, NW Argentina. In: Oncken O, Chong G, Franz G, Giese P, Götze H, Ramos VA, Strecker MR, Wigger P (eds) The Andes: active subduction orogeny: Frontiers in earth sciences. Springer-Verlag, Berlin-Heidelberg, pp 563–564CrossRefGoogle Scholar
  91. Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland — evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91CrossRefGoogle Scholar
  92. Siebel W, Schnurr W, Hahne K, Kraemer B, Trumbull RB, van den Bogaard P, Emmermann R (2001) Geochemistry and isotope systematics of small- to medium-volume Neogene Pleistocene ignimbrites in the southern Central Andes: evidence for derivation from andesitic magma sources. Chem Geol 171:213–237CrossRefGoogle Scholar
  93. Spandler C, Pirard C (2013) Element recycling from subducting slabs to arc crust: a review. Lithos 170–171:208–223CrossRefGoogle Scholar
  94. Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE, Sobel ER, Trauth MH (2007) Tectonics and climate of the southern Central Andes. Annu Rev Earth Pl Sci 35:747–787CrossRefGoogle Scholar
  95. Tang M, Rudnick RL, Chauvel C (2014) Sedimentary input to the source of Lesser Antilles lavas: a Li perspective. Geochim Cosmochim Ac 144:43–58CrossRefGoogle Scholar
  96. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  97. Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178CrossRefGoogle Scholar
  98. Tomascak PB (2004) Lithium isotopes in earth and planetary sciences. Rev Mineral Geochem 55:153–195CrossRefGoogle Scholar
  99. Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sc Lett 196:227–238CrossRefGoogle Scholar
  100. Tomascak PB, Magna T, Dohmen R (2016) Li partitioning, diffusion and associated isotopic fractionation: theoretical and experimental insights. In: Advances in Lithium isotope geochemistry. Advances in isotope geochemistry. Springer, Cham, pp 47–118CrossRefGoogle Scholar
  101. Trumbull RB, Wittenbrink R, Hahne K, Emmermann R, Büsch W, Gerstenberger H, Siebel W (1999) Evidence for Late Miocene to recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26S) and its geodynamic implications. J S Am Earth Sci 12:135–155CrossRefGoogle Scholar
  102. USGS (2018) Mineral Commodity summaries/Lithium https://minerals.usgs.gov/minerals/pubs/commodity/lithium/. Accessed 04 Aug 2019
  103. Voss R (2002) Cenozoic stratigraphy of the southern Salar de Antofalla region, northwestern Argentina. Revista Geológica de Chile 29:151–165CrossRefGoogle Scholar
  104. Ward KM, Zandt G, Beck SL, Christensen DH, McFarlin H (2014) seismic imaging of the magmatic underpinnings beneath the Altiplano–Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet Sci Lett 404:43–53CrossRefGoogle Scholar
  105. Wimpenny J, Gislason SR, James RH, Gannoun A, Pogge Von Strandmann PAE, Burton KW (2010) The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim Cosmochim Acta 74:5259–5279CrossRefGoogle Scholar
  106. Wörner G, Mamani M, Blum-Oeste M (2018) Magmatism in the Central Andes. Elements 14:237–244CrossRefGoogle Scholar
  107. Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Schurr B, Graeber F, Rudloff A, Hanka W, Wylegalla K, Tibi R, Haberland C, Rietbrock A, Giese P, Wigger P, Röwer P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408:958–961CrossRefGoogle Scholar
  108. Zimmermann U (2005) Provenance studies of very low- to low-grade metasedimentary rocks of the Puncoviscana formation in Northwest Argentina. In: Vaughan APM, Leat PT, Pankhurst RJ eds, terrane processes at the margins of Gondwana. Geol Soc Spec Publ 246:381–416Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MARUM-Center for Marine Environmental Sciences and Faculty of GeosciencesUniversity of BremenBremenGermany
  2. 2.Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy-CONICET, Instituto de Geología y MineríaS. S. de JujuyArgentina
  3. 3.LaTe Andes, CONICET, Universidad Nacional de SaltaSaltaArgentina
  4. 4.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  5. 5.IsoAnalysis UGBerlinGermany

Personalised recommendations