Trace element geochemistry of magnetite from the Cerro Negro Norte iron oxide−apatite deposit, northern Chile

  • Eduardo Salazar
  • Fernando BarraEmail author
  • Martin Reich
  • Adam Simon
  • Mathieu Leisen
  • Gisella Palma
  • Rurik Romero
  • Mario Rojo


Kiruna-type iron oxide−apatite (IOA) deposits constitute an important source of iron and phosphorus, and potentially of rare earth elements (REE). However, the origin of IOA deposits is still a matter of debate with models that range from a purely magmatic origin by liquid immiscibility to replacement of host rocks by hydrothermal fluids from different sources. In order to better constrain the origin of Andean IOA deposits, we focused on the Cretaceous Cerro Negro Norte deposit located in the Chilean Iron Belt, northern Chile. The Cerro Negro Norte magnetite ore is hosted in andesitic rocks and is spatially and genetically associated with a diorite intrusion. Our results show that the deposit is characterized by three main mineralization/alteration episodes: an early Fe–oxide event with magnetite and actinolite followed by four stages that comprise the main hydrothermal event (hydrothermal magnetite + actinolite; calcic–sodic alteration + sulfides; quartz–tourmaline and propylitic alteration) and a minor supergene event. Based on textural and chemical characteristics, four different types of magnetite are recognized at Cerro Negro Norte: type I, represented by high-temperature (~ 500 °C) magnetite cores with amphibole, pyroxene, and minor Ti–Fe oxide inclusions; type II, an inclusion-free magnetite, usually surrounding type I magnetite cores; type III corresponds to an inclusion-free magnetite with chemical zoning formed under moderate temperatures; and type IV magnetite contains abundant inclusions and is related to low-temperature (~ 250 °C) hydrothermal veinlets. Electron probe and laser ablation ICP-MS analyses of the four magnetite types show that the incorporation of Al, Mn, Ti, and V into the magnetite structure is controlled by temperature. Vanadium and Ga concentrations are relatively constant within each magnetite type, but are statistically different among magnetite types, suggesting that both elements could be used to discriminate between magmatic and hydrothermal magnetite. However, our results show that the use of elemental discrimination diagrams should be coupled with detailed textural studies in order to identify superimposed metasomatic events and evaluate the impact of inclusions on the interpretation of microanalytical data. The presence of a distinct textural and chemical variation between magnetite types in Cerro Negro Norte is explained by a transition from high- to low-temperature magmatic-hydrothermal conditions. The microanalytical data of magnetite presented here, coupled with new δ34S data for pyrite (− 0.5 to + 4.3‰) and U–Pb ages of the diorite (129.6 ± 1.0 Ma), are indicative of a genetic connection between the diorite intrusion and the magnetite mineralization, supporting a magmatic-hydrothermal flotation model to explain the origin of Kiruna-type deposits in the Coastal Cordillera of northern Chile.


Magnetite Trace element geochemistry Andean IOCG clan Iron oxide−apatite deposits Chile 



This work was funded by FONDECYT grant no. 1140780 to F. Barra and the Millennium Science Initiative (MSI) through Millennium Nucleus for Metal Tracing along Subduction grant NC130065. The LA-ICP-MS analytical work was supported by CONICYT-Fondequip instrumentation grant EQM120098. We are grateful to Carlos Garrido and Rudencindo Clavijo, from the Chemistry Department of the Universidad de Chile, for their help with the micro-Raman analyses; Victor Valencia for zircon mineral separation at Zirchron LLCC; and Dave Dettman for sulfur isotope analyses at the University of Arizona. We thank the Compañía Minera del Pacífico (CMP) and their geology team for their helpful logistical support, and for providing access to the mine and drill cores. Finally, we acknowledge chief editor Bernd Lehmann for handling the manuscript. Thomas Angerer, an anonymous reviewer, and associate editor Alexandre Cabral are acknowledged for their comments and suggestions.

Supplementary material

126_2019_879_MOESM1_ESM.xls (358 kb)
ESM 1 (XLS 358 kb)
126_2019_879_MOESM2_ESM.pdf (456 kb)
ESM 2 (PDF 455 kb)


  1. Aguirre L (1985) The southern Andes. In: Nairn AEM, Stehli FG, Uyeda S (eds) The ocean basins and margins. Springer, Boston, MA, pp 265–376CrossRefGoogle Scholar
  2. Arévalo C (1995) Mapa Geológico Hoja Copiapó, Región de Atacama, escala 100,000. Servicio Nacional de Geología y MineríaGoogle Scholar
  3. Arévalo C (2005) Carta Copiapó, Región de Atacama. 54 p., 1 map escala 1:100,000. Servicio Nacional de Geología y MineríaGoogle Scholar
  4. Barra F, Reich M, Selby D, Rojas P, Simon A, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG clan: a Re-Os isotope approach. Ore Geol Rev 81:62–78CrossRefGoogle Scholar
  5. Barton MD (2014) Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems. In: Holland H and Turkian K (eds) Treatise in Geochemistry 2nd Edition 13:515–541Google Scholar
  6. Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide-copper-gold district, III Región, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440CrossRefGoogle Scholar
  7. Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016) Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Acta 177:94–104CrossRefGoogle Scholar
  8. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved Pb-206/U-218 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, IDTIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  9. Broughm SG, Hanchar JM, Tornos F, Westhues A, Attersley S (2017) Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Mineral Deposita 52:1223–1244CrossRefGoogle Scholar
  10. Chen H, Cooke DR, Baker MJ (2013) Mesozoic iron oxide copper-gold mineralization in the Central Andes and the Gondwana supercontinent breakup. Econ Geol 108:37–44CrossRefGoogle Scholar
  11. Coleman ML, Moore MP (1978) Direct reduction of sulfates to sulfur dioxide for isotopic analysis. Anal Chem 50:1594–1595CrossRefGoogle Scholar
  12. Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796CrossRefGoogle Scholar
  13. Dare SAS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineral Deposita 50:607–617CrossRefGoogle Scholar
  14. Deditius AP, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Sauders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Mineral Petrol 173:46. CrossRefGoogle Scholar
  15. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335CrossRefGoogle Scholar
  16. Espinoza S (1990) The Atacama-Coquimbo ferriferous belt, northern Chile. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer-Verlag, Berlin, pp 353–364CrossRefGoogle Scholar
  17. Gelcich S, Davis DW, Spooner ETC (2005) Testing the apatite-magnetite geochronometer: U-Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies, and IOCG mineralization in Northern Chile. Geochim Cosmochim Acta 69:3367–3384CrossRefGoogle Scholar
  18. Grocott J, Taylor GK (2002) Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30'S to 27°00'S). J Geol Soc 159:425–443CrossRefGoogle Scholar
  19. Jenkins DM (1983) Stability and composition relations of calcic amphiboles in ultramafic rocks. Contrib Mineral Petrol 83:375–384CrossRefGoogle Scholar
  20. Kamvong T, Zaw K, Siegele R (2007) PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: a pilot study. 15th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress. University of Melbourne, Melbourne, AustraliaGoogle Scholar
  21. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594CrossRefGoogle Scholar
  22. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38CrossRefGoogle Scholar
  23. Knipping JL, Fiege A, Simon AC, Oeser M, Reich M, Bilenker L (2019) In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide−apatite deposit. Am Mineral, Chile. CrossRefGoogle Scholar
  24. Lara L, Godoy E (1998) Hoja Quebrada Salitrosa, Región de Atacama. Servicio Nacional de Geologia y Mineria (SERNAGEOMIN), Mapas Geológicos, 1:100,000 scale, No. 4Google Scholar
  25. Loberg BEH, Horndahl A-K (1983) Ferride geochemistry of Swedish Precambrian iron ores. Mineral Deposita 18:487–504CrossRefGoogle Scholar
  26. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904CrossRefGoogle Scholar
  27. Loyola N (2016) Origen de la mineralización y alteración hidrotermal del depósito tipo IOCG Diego de Almagro, III Región de Atacama, Chile. Honours thesis, Universidad de Chile, Santiago, Chile, 130 pp.Google Scholar
  28. Ludwig K (2010) Isoplot/Ex version 4.1, a geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication No. 4Google Scholar
  29. Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide Cu-Au(-Zn-Ag) deposits, Chile. Econ Geol 96:1799–1826Google Scholar
  30. McInnes BIA, Keays RR, Lambert DD, Hellstrom J, Allwood JS (2008) Re–Os geochronology and isotope systematics of the Tanami, Tennant Creek and Olympic Dam Cu–Au deposits. Aust J Earth Sci 55:967–981CrossRefGoogle Scholar
  31. Ménard J (1995) Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile). Mineral Deposita 30:268–274CrossRefGoogle Scholar
  32. Meng Y, Hu R, Huang X, Gao J (2017) Germanium in magnetite: a preliminary review. Acta Geol Sin 91:711–726CrossRefGoogle Scholar
  33. Mpodozis C, Ramos VA (1990) The Andes of Chile and Argentina. In: Ericksen E, Cañas Pinochet T, Reinemund A (eds) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series 11:59–90Google Scholar
  34. Nadoll P (2011) Geochemistry of magnetite from hydrothermal ore deposits and host rocks –case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Mo deposits in the western United States. PhD thesis, The University of Auckland, 313 pGoogle Scholar
  35. Nadoll P, Koenig AE (2011) LA-ICP-MS of magnetite: methods and reference materials. J Anal At Spectrom 26:1872–1877CrossRefGoogle Scholar
  36. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  37. Nadoll P, Mauk JL, Richard AL, Koenig AE (2015) Geochemistry of magnetite from porphyry cu and skarn deposits in the southwestern United States. Mineral Deposita 50:493–515CrossRefGoogle Scholar
  38. Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839CrossRefGoogle Scholar
  39. Ovalle JT, La Cruz NL, Reich M, Barra F, Simon AC, Konecke B, Rodriguez-Mustafa MA, Childress T, Deditius A, Morata D (2018) Formation of massive iron deposits linked to explosive volcanic eruptions. Sci Rep UK 8:14855CrossRefGoogle Scholar
  40. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  41. Raab A (2001) Geology of the Cerro Negro Norte Fe-oxide (Cu-Au) District, Coastal Cordillera, northern Chile. MSc thesis, Oregon State University, 273Google Scholar
  42. Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP, Munizaga R (2016) Trace element signature of pyrite from the Los Colorados Iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems. Econ Geol 111:743–761CrossRefGoogle Scholar
  43. Rieger AA, Marschik R, Díaz M, Hölzl S, Charadia M, Akker B, Spangenberg JE (2010) The hypogene iron oxide copper-gold mineralization in the Mantoverde district, northern Chile. Econ Geol 105:1271–1299CrossRefGoogle Scholar
  44. Rojas P, Barra F, Deditius A, Reich M, Simon A, Roberts M, Rojo M (2018a) New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geol Rev 93:413–435CrossRefGoogle Scholar
  45. Rojas P, Barra F, Reich M, Deditius A, Simon A, Uribe F, Romero R, Rojo M (2018b) A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile. Mineral Deposita 53:947–966. CrossRefGoogle Scholar
  46. Rubatto D (2002) Zircon trace element geochemistry; partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  47. Ruiz FC, Corvalán J, Klohn C, Klohn E, Levi B (1965) Geología y yacimientos metalíferos de Chile. Instituto de Investigaciones Geológicas, Santiago, p 305Google Scholar
  48. Segerstrom K (1968) Geología de las hojas Copiapó y Ojos del Salado, Provincia de Atacama. Instituto de Investigaciones Geológicas, Boletín No 24:58Google Scholar
  49. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812CrossRefGoogle Scholar
  50. Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109Google Scholar
  51. Simon AC, Knipping J, Reich M, Barra F, Deditius A, Bilenker L, Childress TA (2018) Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt. Soc Econ Geol (SEG): Special Publications 21:89–114Google Scholar
  52. Sláma J, Košler J, Condon D, Crowley J, Gerdes A, Hanchar J, Horstwood M, Morris G, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M, Whitehouse M (2008) Plešovice zircon — a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  53. Staudigel H, Schreyer W (1977) Upper thermal stability of clinochlore at PH2O = 10-35 kb. Contrib Miner Petrol 61:187–198CrossRefGoogle Scholar
  54. Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Miner Petrol 144:22–37CrossRefGoogle Scholar
  55. Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile. Geology 44(6):427–430Google Scholar
  56. Van Baalen MR (1993) Titanium mobility in metamorphic systems: a review. Chem Geol 110:233–249CrossRefGoogle Scholar
  57. Vivallo W, Henríquez F, Espinoza S (1995a) Metasomatismo y alteración hidrotermal en el distrito ferrífero Cerro Negro Norte, Copiapó, Chile. Rev Geol Chile 22:75–88Google Scholar
  58. Vivallo W, Espinoza S, Henríquez F (1995b) Los depósitos de hierro del tipo magnetita-apatita: geoquímica de las rocas volcánicas asociadas y potencialidad de la mena de hierro como fuente de mineralización de oro. Rev Geol Chile 22:159–175Google Scholar
  59. Wen G, Li JW, Hofstra A, Koenig AE, Lowers HA, Adams D (2017) Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: insights from the Handan-Xingtai iron district, North China Craton. Geochim Cosmochim Acta 213:255–270CrossRefGoogle Scholar
  60. Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton CO, pp 371–405Google Scholar
  61. Zhimin Z, Yali S (2013) Direct re-Os dating of chalcopyrite from the Lala IOCG deposit in the Kangdian copper belt, China. Econ Geol 108:871–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology and Andean Geothermal Center of Excellence (CEGA), FCFMUniversidad de ChileSantiagoChile
  2. 2.Millennium Nucleus for Metal Tracing Along Subduction, FCFMUniversidad de ChileSantiagoChile
  3. 3.Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA
  4. 4.Compañía Minera del Pacífico (CMP)La SerenaChile

Personalised recommendations