Advertisement

The geochemistry of apatite from the Los Colorados iron oxide–apatite deposit, Chile: implications for ore genesis

  • Nikita L. La CruzEmail author
  • Adam C. Simon
  • Aaron S. Wolf
  • Martin Reich
  • Fernando Barra
  • Joel E. Gagnon
Article

Abstract

Apatite grains from the Los Colorados iron oxide–apatite (IOA) deposit, the largest IOA deposit in the Chilean Iron Belt (CIB), exhibit significant intracrystalline spatial variability with respect to the concentrations of F, Cl, and OH and trace elements. Statistical interrogation of the compositional data indicates that individual apatite grains contain spatially discrete F-rich and Cl-rich domains. The chemical composition of the F-rich domains is consistent with apatite growth from silicate melts, whereas the chemical composition of the Cl-rich domains is consistent with apatite growth from a magmatic-hydrothermal fluid that cooled as it percolated outward from the Los Colorados fault—the structural control for emplacement of the ore body—into the surrounding brecciated diorite and andesite host rocks. Apatite in the deposit is intimately intergrown with magnetite and actinolite for which trace element, Fe, H, and O stable isotope data indicate a combined magmatic/magmatic-hydrothermal genesis for the deposit. The compositional data for apatite are consistent with a genetic model wherein F-rich apatite cores crystallized with magnetite from silicate melt, followed by exsolution of a magmatic-hydrothermal fluid during decompression of the parent magma. Experimental studies demonstrate that magmatic-hydrothermal volatile phase bubbles preferentially nucleate and grow on the surfaces of apatite and magnetite microlites during decompression of a magma body. Continued degassing of the melt results in the volatile phase sweeping up apatite and magnetite microlites, and forming a magnetite-apatite-fluid suspension that is buoyant in the magma chamber, and ascends from the source magma along faults during regional extension. Halite-saturated fluid inclusions in magnetite, which is paragenetically equivalent to apatite at Los Colorados, indicate that the magmatic-hydrothermal fluid was a brine, which allows this fluid to efficiently scavenge Cl, P, rare earth elements, and other fluid-compatible elements from the silicate melt. During ascent, the XCl/XF ratio of apatite increases as it grows from the evolving Cl-rich magmatic-hydrothermal fluid during decompression and cooling.

Keywords

Apatite geochemistry Iron oxide–apatite deposit Los Colorados IOA Chilean Iron Belt 

Notes

Acknowledgments

NLL acknowledges support from the Society of Economic Geologists student grant program, the University of Michigan Rackham Graduate School, and the Scott Turner Award and George Mitchell Fund in Earth & Environmental Sciences at the University of Michigan. ACS acknowledges support from the United States National Science Foundation grants EAR 1250239 and 1524394. ASW acknowledges support from the Turner Postdoctoral Fellowship at the University of Michigan. MR and FB acknowledge funding from the MSI grant “Millennium Nucleus for Metal Tracing along Subduction” NC130065, FONDECYT grant no. 1140780 and FONDAP project 15090013 “Centro de Excelencia en Geotermia de Los Andes, CEGA.” We thank Amanda Maslyn for her assistance with the mineral separation processes used to obtain apatite grains for the grain mounts. We thank Gordon Moore for his assistance with the microprobe and scanning electron microscope analyses. We also thank Jean Claude Barrette (University of Windsor) for his assistance with the laser ablation ICP-MS analyses. We thank Mr. Wizard, Dale Austin, for his assistance making the comparison plots. Finally, we would like to acknowledge geologists Mario Rojo, Rodrigo Munizaga, and Mario Lagos from Compañía Minera del Pacífico (CAP), for providing access to Los Colorados and logistical support during drill core and surface sampling. We thank Dan Harlov, an anonymous reviewer, AE Rolf Romer, and Editor Georges Beaudoin for their thoughtful comments and feedback that greatly improved the manuscript substantively and stylistically.

Supplementary material

126_2019_861_MOESM1_ESM.pdf (14.7 mb)
ESM 1 (PDF 15019 kb)
126_2019_861_MOESM2_ESM.csv (105 kb)
ESM 2 (CSV 104 kb)

References

  1. Barra F, Reich M, Selby D, Rojas P, Simon AC, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG clan: a Re-Os approach. Ore Geol Rev 81:62–78CrossRefGoogle Scholar
  2. Barton MD (2013) Iron oxide(-Cu-Au-REE-P-Ag-U-Co) systems. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 515–541Google Scholar
  3. Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE-Cu-Au-U) mineralization. Geology 24(3):259–262CrossRefGoogle Scholar
  4. Barton MD, Johnson DA (2004) Footprints of Fe-oxide(-Cu-Au) systems. SEG 2004: Predictive Mineral Discovery Under Cover. Centre for Global Metallogeny, Spec. Pub. 33, The University of Western Australia: 112-116Google Scholar
  5. Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochemical Explor 76:45–69CrossRefGoogle Scholar
  6. Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016) Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Ac 177:94–104CrossRefGoogle Scholar
  7. Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281:253–269CrossRefGoogle Scholar
  8. Boudreau AE (1993) Chlorine as an exploration guide for the platinum-group elements in layered intrusions. J Geochem Explor 48:21–37CrossRefGoogle Scholar
  9. Boudreau AE, Kruger FJ (1990) Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex. Econ Geol 85:737–745CrossRefGoogle Scholar
  10. Boudreau AE, Simon AC (2007) Crystallization and degassing in the basement sill, McMurdo Dry Valleys, Antarctica. J Petrol 48(7):1369–1386CrossRefGoogle Scholar
  11. Boudreau AE, Mathez EA, Mccallum IS (1986) Halogen geochemistry of the stillwater and bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids. J Petrol 27:967–986CrossRefGoogle Scholar
  12. Boudreau AE, Love C, Prendergast MD (1995) Halogen geochemistry of the Great Dyke, Zimbabwe. Contrib Mineral Petr V:289–300.  https://doi.org/10.1007/s004100050128 CrossRefGoogle Scholar
  13. Bouzari F, Hart CJ, Bissig R, Barker S (2016) Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits. Econ Geol 111:1397–1410CrossRefGoogle Scholar
  14. Broughm SG, Hanchar JM, Tornos F, Westhues A, Attersley S (2017) Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Mineral Deposita 52:1223–1244.  https://doi.org/10.1007/s00126-017-0718-8 CrossRefGoogle Scholar
  15. Brown GM, Peckett A (1977) Fluorapatites from Skaergaard intrusion, East Greenland. Mineral Mag 41:227–232CrossRefGoogle Scholar
  16. Compañía Minera del Pacífico (2013) Presentation NEVASA. www.cap.cl/wp/content/uploads/2013/09/cap_presentacion_nevasa_septiembre_2013.p. Accessed 10 December 2015
  17. Davidson GJ, Large RR (1994) Gold metallogeny and the copper-gold association of the Australian Proterozoic. Mineral Deposita 29(3):208–223Google Scholar
  18. de Jong G, Rotherham J, Phillips GN, Williams PJ (1998) Mobility of rare-earth elements and copper during shear-zone-related retrograde metamorphism. Geol Mijnb 76(4):311–319CrossRefGoogle Scholar
  19. Deditius A, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Min Petrol 173(6):46CrossRefGoogle Scholar
  20. Edmonds M (2015) Flotation of magmatic minerals. Geology 43(7):655–656CrossRefGoogle Scholar
  21. Edmonds M, Brett A, Herd RA, Humphreys MCS, Woods A (2014) Magnetite-bubble aggregates at mixing interfaces in andesite magma bodies. Geol Soc London Spc Pub 410(1):95–121CrossRefGoogle Scholar
  22. Frietsch R (1978) On the magmatic origin of iron ores of the Kiruna type. Econ Geol 73:478–485CrossRefGoogle Scholar
  23. Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510CrossRefGoogle Scholar
  24. Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Mineral 97(7):1103–1115CrossRefGoogle Scholar
  25. Götze J (2012) Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microsc Microanal 18:1270–1284CrossRefGoogle Scholar
  26. Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral Petrol 71:225–250CrossRefGoogle Scholar
  27. Gros K, Słaby E, Förster HJ, Michalak PP, Munnik F, Götze J, Rhede D (2016) Visualization of trace-element zoning in fluorapatite using BSE and CL imaging, and EPMA and μPIXE/μPIGE mapping. Miner Petrol 110(6):809–821.  https://doi.org/10.1007/s00710-016-0452-4 CrossRefGoogle Scholar
  28. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654CrossRefGoogle Scholar
  29. Gualda GAR, Ghiorso MS (2007) Magnetite scavenging and the buoyancy of bubbles in magmas. Part 2: energetics of crystal-bubble attachment in magmas. Contrib Min Petrol 154:479–490CrossRefGoogle Scholar
  30. Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) Appendix A6: SILLS: a Matlab-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40:328–333Google Scholar
  31. Harlov DE (2015) Apatite: a fingerprint for metasomatic processes. Elements 11:171–176CrossRefGoogle Scholar
  32. Harlov DE, Förster HJ (2003) Fluid-induced nucleation of (Y-REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229CrossRefGoogle Scholar
  33. Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite–monazite relations in the Kiirunavaara magnetite–apatite ore, northern Sweden. Chem Geol 191:47–72CrossRefGoogle Scholar
  34. Harlov DE, Meighan CJ, Kerr ID, Samson IM (2016) Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y+ REE) deposit, southeast Missouri, USA. Econ Geol 111(8):1963–1984CrossRefGoogle Scholar
  35. Hautmann S, Witham F, Christopher T, Cole P, Linde AT, Sacks S, Sparks SJ (2014) Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in the magmatic system of Soufriere Hills Volcano. Geoch Geophys Geosys 15:676–690CrossRefGoogle Scholar
  36. Hersum T, Hilpert M, Marsh B (2005) Permeability and melt flow in simulated and natural partially molten basaltic magmas. Earth Planet Sci Lett 237(3):798–814CrossRefGoogle Scholar
  37. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287CrossRefGoogle Scholar
  38. Hofstra AH, Meighan CJ, Song X, Samson I, Marsh EE, Lowers HA, Emsbo P, Hunt AG (2016) Mineral thermometry and fluid inclusion studies of the Pea Ridge iron oxide-apatite–rare earth element deposit, Mesoproterozoic St. Francois Mountains terrane, southeast Missouri, USA. Econ Geol 111:1985–2016CrossRefGoogle Scholar
  39. Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170CrossRefGoogle Scholar
  40. Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122(3–4):267–280CrossRefGoogle Scholar
  41. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  42. Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in central Sweden. Sci Rep 3:1644CrossRefGoogle Scholar
  43. Jonsson E, Harlov DE, MaJka J, Högdahl K, Persson-Nilsson K (2016) Fluorapatite-monazite allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden. Am Mineral 101(8):1769–1782CrossRefGoogle Scholar
  44. Kempe U, Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66:151–172CrossRefGoogle Scholar
  45. Ketcham RA (2015) Technical note: calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. Am Mineral 100:1620–1623.  https://doi.org/10.2138/am-2015-5171 CrossRefGoogle Scholar
  46. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594CrossRefGoogle Scholar
  47. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wӓlle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38CrossRefGoogle Scholar
  48. Konecke BA, Fiege A, Simon AC, Parat F, Stechern A (2017a) Co-variability of S6+, S4+ and S2− in apatite as a function of oxidation state: implications for a new oxybarometer. Am Mineral 102(3):548–557.  https://doi.org/10.2138/am-2017-5907 CrossRefGoogle Scholar
  49. Konecke B, Fiege A, Simon AC, Holtz F (2017b) Cryptic metasomatism during late-stage lunar magmatism implicated by sulfur in apatite. Geology 45:739–742Google Scholar
  50. Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485CrossRefGoogle Scholar
  51. Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions: a robust new tool for mineral exploration. Econ Geol 111:187–1222CrossRefGoogle Scholar
  52. Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243CrossRefGoogle Scholar
  53. Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F (2015) Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nat Geosci 8(3):216–219CrossRefGoogle Scholar
  54. Nadoll P, Angerer T, Mauk J, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  55. Naslund HR, Henríquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, 2nd edn. PGC Publishing, Adelaide, pp 207–226Google Scholar
  56. Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839CrossRefGoogle Scholar
  57. Oyarzún J, Frutos J (1984) Tectonic and petrological frame of the Cretaceous iron deposits of North Chile. Mining Geol 34:21–31Google Scholar
  58. Oyarzun R, Oyarzún J, Ménard JJ, Lillo J (2003) The Cretaceous iron belt of northern Chile: role of oceanic plates, a superplume event, and a major shear zone. Miner Deposita 38(5):640–646CrossRefGoogle Scholar
  59. Parat F, Holtz F, Streck MJ (2011) Sulfur-bearing magmatic accessory minerals. Rev Mineral Geochemistry 73:285–314.  https://doi.org/10.2138/rmg.2011.73.10 CrossRefGoogle Scholar
  60. Pettke T, Oberli F, Audetat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev 44:10–38CrossRefGoogle Scholar
  61. Piccoli PM, Candela PA (2002) Apatite in igneous system. Rev Mineral Geochem 48(1):255–292CrossRefGoogle Scholar
  62. Pichon R (1981) Contribution a l’étude de la ceinture du fer du Chili: Les gisements de Bandurrias (Prov. d’Atacama) et Los Colorados norte. (Prov. de Huasco). Dissertation, University of ParisGoogle Scholar
  63. Pincheira M, Thiele R, Fontbote L (1990) Tectonic transpression along the southern segment of the Atacama Fault-Zone, Chile. In: Colloques et Seminaires: Symposium International Géodynamique Andine, Grenoble, pp 133–136Google Scholar
  64. Pirajno F, Bagas L (2008) A review of Australia's Proterozoic mineral systems and genetic models. Precambrian Res 166(1):54–80CrossRefGoogle Scholar
  65. Pyle JM, Spear FS, Wark DA (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Rev Mineral Geochem 48(1):337–362CrossRefGoogle Scholar
  66. Reed MJ, Candela PA, Piccoli PM (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 200 MPa and 800 °C. Contrib Min Petr 140:251–262CrossRefGoogle Scholar
  67. Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems? Econ Geol 111:743–761CrossRefGoogle Scholar
  68. Rhodes AL, Oreskes N (1999) Oxygen isotope composition of magnetite deposits at El Laco, Chile: evidence of formation from isotopically heavy fluids. Soc Econ Geol Spc Pub 7:333–351Google Scholar
  69. Rhodes AL, Oreskes N, Sheets S (1999) Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. Soc Econ Geol Spc Pub 7:299–332Google Scholar
  70. Rojas PA, Barra F, Deditius A, Reich M, Simon A, Roberts M, Rojo M (2018) New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geol Rev 93:413–435CrossRefGoogle Scholar
  71. Schettler G, Gottschalk M, Harlov DE (2011) A new semi-micro wet chemical method for apatite analysis and its application to the crystal chemistry of fluorapatite-chlorapatite solid solutions. Am Mineral 96:138–152CrossRefGoogle Scholar
  72. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812CrossRefGoogle Scholar
  73. Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97(5):1101–1109Google Scholar
  74. Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich C (2007) The partitioning behavior of As and Au in a S-free and S-bearing magmatic systems. Geochim Cosmochim Ac 71:1764–1782CrossRefGoogle Scholar
  75. Simon AC, Knipping J, Reich M, Barra F, Deditius A, Bilenker L, Childress T (2018) Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt. SEG Special Publications No. 21. pp. 89-114Google Scholar
  76. Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26:523–526.  https://doi.org/10.1130/0091-7613(1998)026<0523:SEOOAM>2.3.CO CrossRefGoogle Scholar
  77. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London, Spc Pub 42:313–345CrossRefGoogle Scholar
  78. Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineral Mag 71:347–363CrossRefGoogle Scholar
  79. Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44:427–430CrossRefGoogle Scholar
  80. Treloar PJ, Colley H (1996) Variation in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications. Mineral Mag 60:285–301CrossRefGoogle Scholar
  81. Velasco F, Tornos F, Hanchar JM (2016) Immiscible iron-and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366CrossRefGoogle Scholar
  82. Watson EB, Capobianco CJ (1981) Phosphorus and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geochim Cosmochim Ac 45:2349–2358CrossRefGoogle Scholar
  83. Waychunas GA (2002) Apatite luminescence. Rev Mineral Geochem 48:701–742CrossRefGoogle Scholar
  84. Webster JD, Mandeville CD (2007) Fluid immiscibility in volcanic environments. Rev Min Geochem 65:313–362CrossRefGoogle Scholar
  85. Webster JD, Piccoli PM (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11:177–182CrossRefGoogle Scholar
  86. Webster JD, Goldoff BA, Flesch RN, Nadeau PA, Silbert ZW (2017) Hydroxyl, Cl, and F partitioning between high-silica rhyolitic melts-apatite-fluid (s) at 50–200 MPa and 700–1000 C. Am Mineral 102(1):61–74CrossRefGoogle Scholar
  87. Weis F (2013) Oxygen and Iron isotope systematics of the Grängesberg Mining District (GMD), Central Sweden. Master’s thesis, Uppsala universitetGoogle Scholar
  88. Westhues A, Hanchar JM, Whitehouse MJ, Martinsson O (2016) New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna District, Norrbotten, Sweden. Econ Geol 111(7):1595–1618CrossRefGoogle Scholar
  89. Westhues A, Hanchar JM, LeMessurier MJ, Whitehouse MJ (2017a) Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 45:571–574CrossRefGoogle Scholar
  90. Westhues A, Hanchar JM, Voisey CR, Whitehouse MJ, Rossman GR, Wirth R (2017b) Tracing the fluid evolution of the Kiruna iron oxide apatite deposits using zircon, monazite, and whole rock trace elements and isotopic studies. Chem Geol 466:303–322CrossRefGoogle Scholar
  91. Williams PJ (1994) Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: implications for the origin of ironstone-hosted Au-Cu deposits. Miner Deposita 29(3):250–260CrossRefGoogle Scholar
  92. Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100(7):1287–1312CrossRefGoogle Scholar
  93. Young EJ, Myers AT, Munson EL, Conklin NM (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. US Geological Survey Professional Paper 650(D):D84–D93Google Scholar
  94. Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Ac 72:2169–2197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Department of Geology and Andean Geothermal Center of Excellence (CEGA)Universidad de ChileSantiagoChile
  3. 3.Department of Earth and Environmental SciencesUniversity of WindsorWindsorUSA

Personalised recommendations