Advertisement

Mineralium Deposita

, Volume 54, Issue 7, pp 983–1010 | Cite as

Geochemistry of canga (ferricrete) and evolution of the weathering profile developed on itabirite and iron ore in the Quadrilátero Ferrífero, Minas Gerais, Brazil

  • C. A. SpierEmail author
  • A. Levett
  • C. A. Rosière
Article

Abstract

Mineralogical and whole rock geochemical analyses for 60 elements on 31 samples of hard ferruginous crust (canga) provide insights into the evolution of the lateritic profile developed on itabirite. Canga can form in two environments: in situ canga that typically caps itabirite and transported canga that covers country rock. Both have similar mineralogical and chemical compositions. Detrital haematite and rare quartz inherited from the itabirite and iron ore comprise the matrix of canga, cemented by goethite, minor gibbsite, and rare manganese oxides and secondary phosphates. Fe2O3 represents more than 91% of its chemical composition and the concentrations of trace elements are low, generally less than 50 ppm. A comparison of the chemical weathering of dolomitic itabirite against the quartz itabirite shows that, although weathering processes are less effective in the former, the geochemical trends of major and trace elements are similar. Negative Ce anomalies (Ce/Ce* = 0.8) and U/Th ratios lower than 1.5 suggest that saprolite formation occurred under slightly anoxic and mildly acidic conditions, allowing rare earth elements (REEs) to remain in the saprolite and also the formation of secondary Al phosphates, instead of Fe phosphates. These conditions became more aggressive during the canga formation process, resulting in further removal of trace elements from the system. The canga formation (pedogenesis) and the chemical weathering of the itabirite (saprolite formation) are independent, but interrelated processes that have been occurring since the Palaeocene.

Keywords

Canga Ferricrete Geochemistry Strengite Iron ore Quadrilátero Ferrífero 

Notes

Acknowledgments

The samples and analytical data presented in this paper were obtained by C.A.S. during his PhD studies at the Geoscience Institute of the University of São Paulo (USP). The research project was possible thanks to the grant issued by the Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (grant BEX2189/02-0) and by the financial support of Minerações Brasileiras Reunidas-MBR (now Vale). We acknowledge the contribution of Prof. Sonia M. B. de Oliveira to the initial discussions that resulted in this paper. Prof. José Domingos Ardisson is thanked for the help with the interpretation of Mössbauer spectra. We are also very grateful to Prof. Ken Collerson and Dr. David Murphy for careful reading and valuable suggestions of the first version of this manuscript. The assistance of Dr. Julius Motuzas with the micro-XRD analysis and interpretation was much appreciated. Jack Ward, Daniel Franks and Dr. John Caulfield are acknowledged for their careful editing. This paper benefited from the insightful comments of Mineralium Deposita’s Associate Editor Alexandre Cabral and of Carlos Augusto de Medeiros Filho (Vale).

Supplementary material

126_2018_856_MOESM1_ESM.docx (15 kb)
Appendix A. Sample location, material type, and description (DOCX 15 kb)
126_2018_856_MOESM2_ESM.xlsx (24 kb)
Appendix B. Analytical results for in situ and transported canga and the brick-red material (XLSX 24 kb)
126_2018_856_MOESM3_ESM.xlsx (30 kb)
Appendix C. Correlation matrixes. C1 - Dolomitic itabirite, soft ore, and canga samples. C2 - Soft ore (saprolite) samples. C3 - In situ and transported canga (XLSX 29 kb)
126_2018_856_MOESM4_ESM.xlsx (41 kb)
Appendix D. Mass change (%) values in the soft ore (saprolite) and canga (ferricrete) in relation to dolomitic itabirite (bedrock) relatively to TiO2 as the immobile component (XLSX 41 kb)

References

  1. Albuquerque A, Angélica R, Gonçalves D, Paz S (2018) Phosphate speleothems in caves developed in iron ores and laterites of the Carajás Mineral Province (Brazil) and a new occurrence of spheniscidite. Int J Speleol 47:53–67.  https://doi.org/10.5038/1827-806x.47.1.2135 CrossRefGoogle Scholar
  2. Alkmim FF, Teixeira W (2017) The Paleoproterozoic Minerio Belt and the Quadrilátero Ferrífero. In: Heilbron M, Cordani UG, Alkmim FF (eds) São Francisco Craton. Eastern Brazil. Tectonic Genealogy of a Miniature Continent. Springer, Cham, pp 71–94Google Scholar
  3. Anand RR, Gilkes RJ (1984) Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. J Soil Sci 35(4):559–567CrossRefGoogle Scholar
  4. Babiychuk E, Kushnir S, Vasconcelos S, Dias MC, Carvalho-Filho N, Nunes GL, Dos Santos JF, Tyski L, da Silva DF, Castilho A, Fonseca VLI, Oliveira G (2017) Natural history of the narrow endemics Ipomoea cavalcantei and I. marabaensis from Amazon Canga savannahs. Sci Rep 7:7493.  https://doi.org/10.1038/s41598-017-07398-z CrossRefGoogle Scholar
  5. Barbosa GV (1980) Superfícies de erosão no Quadrilátero Ferrífero. Minas Gerais Rev Bras Geoc 10:89–101Google Scholar
  6. Barbour AP (1973) Distribution of phosphorous in the iron ore deposits of Itabira, Minas Gerais, Brazil. Econ Geol 68:52–64CrossRefGoogle Scholar
  7. Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27CrossRefGoogle Scholar
  8. Berger A, Janots E, Gnos E, Frei R, Bernier F (2014) Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl Geochem 41:218–228.  https://doi.org/10.1016/j.apgeochem.2013.12.013 CrossRefGoogle Scholar
  9. Bourman RP (1993) Perennial problems in the study of laterite: a review. Aust J Earth Sci 40:387–401CrossRefGoogle Scholar
  10. Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochim Cosmochim Acta 54:781–795.  https://doi.org/10.1016/0016-7037(90)90373-S CrossRefGoogle Scholar
  11. Cabral AR, Zapparoli A, Motta EGM, Kwitko-Ribeiro R (2012) Coarse-grained siderite in canga, Quadrilátero Ferrífero of Minas Gerais, Brazil: mineralogical evidence for the longevity of ferruginous duricrust. Neues Jahrb Geol Palaontol Abh 265:305–314.  https://doi.org/10.1127/0077-7749/2012/0269 CrossRefGoogle Scholar
  12. Carmo FFd, Jacobi CM (2013) Canga vegetation in the iron quadrangle, Minas Gerais: characterization and phytogeographical context Rodriguésia 64:527–541Google Scholar
  13. Carmo IO, Vasconcelos P (2004) Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surf Process Landf 29:1303–1320.  https://doi.org/10.1002/esp.1090 CrossRefGoogle Scholar
  14. Carmo IO, Vasconcelos P (2006) 40Ar/39Ar geochronology constraints on late Miocene weathering rates in Minas Gerais, Brazil. Earth Planet Sci Lett 241:80–94CrossRefGoogle Scholar
  15. Cornu S, Lucas Y, Lebon E, Ambrosi JP, Luizão F, Rouiller J, Bonnay M, Neal C (1999) Evidence of titanium mobility in soil profiles, Manaus, Central Amazonia. Geoderma 91:281–295CrossRefGoogle Scholar
  16. Cornell RM, Schwertmann U (1996) The Iron Oxides. Weinheim New York Basel Cambridge TokyoGoogle Scholar
  17. Costa ML, Angélica RS, Costa NC (1999) The geochemical association Au–As–B–(Cu)–Sn–W in latosol, colluvium, lateritic iron crust and gossan in Carajás, Brazil: importance for primary ore identification. J Geochem Explor 67:33–49CrossRefGoogle Scholar
  18. Costa ML, Araújo ES (1997) Caracterização mineralógica e geoquímica multi-elementar de crostas ferruginosas lateríticas tipo minérios de ferro em Carajás Geociências 16:55–86Google Scholar
  19. Costa ML, Carmo MS, Behling H (2005) Mineralogia e geoquímica de sedimentos lacustres com substrato laterítico na Amazônia brasileira. Rev Bras Geoc 35:165–176CrossRefGoogle Scholar
  20. Costa ML, Queiroz JDS, Silva ACS, Almeida HDF, Silva GJS, Costa LCG Perfil laterítico desenvolvido sobre Formação Ferrífera Bandada (Jaspilito) em Carajás. In: 12° Simpósio de Geologia da Amazônia, Boa Vista, Roraima, 2011. Sociedade Brasileira de Geologia,Google Scholar
  21. Dequincey O, Chabaux F, Leprun JC, Paquet H, Clauer N, Larque P (2006) Lanthanide and trace element mobilization in a lateritic toposequence: inferences from the Kaya laterite in Burkina Faso. Eur J Soil Sci 57:816–830.  https://doi.org/10.1111/j.1365-2389.2005.00773.x CrossRefGoogle Scholar
  22. Deschamps E, Ciminelli VST, Höll WH (2005) Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Res 39(20):5212–5220CrossRefGoogle Scholar
  23. Dixit S, Hering JG (2003) Comparison of Arsenic(V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environ Sci Technol 37(18):4182–4189CrossRefGoogle Scholar
  24. Dorr II JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil: U. S. Geological survey professional paper 641-aGoogle Scholar
  25. Dorr IIJVN, Barbosa ALM (1963) Geology and ore deposits of the Itabira District, Minas Gerais, Brazil: U. S. Geol. Survey prof. In: Paper 341-CGoogle Scholar
  26. Dorr JVN (1964) Supergene iron ores of Minas Gerais, Brazil. Econ Geol 59:1203–1240CrossRefGoogle Scholar
  27. Du X, Rate AW, Gee MAM (2012) Redistribution and mobilization of titanium, zirconium and thorium in an intensely weathered lateritic profile in Western Australia. Chem Geol 330-331:101–115.  https://doi.org/10.1016/j.chemgeo.2012.08.030 CrossRefGoogle Scholar
  28. Eichler J (1968) O enriquecimento residual e supergênico dos itabiritos através do intemperismo. Geologia:29–40Google Scholar
  29. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219CrossRefGoogle Scholar
  30. Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257.  https://doi.org/10.1016/S0016-7037(98)00243-9 CrossRefGoogle Scholar
  31. Frost RL, López A, Xi Y, Murta N, Scholz R (2013) The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3·3H2O – a vibrational spectroscopic study. J Mol Struct 1048:420–425.  https://doi.org/10.1016/j.molstruc.2013.05.061 CrossRefGoogle Scholar
  32. Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288.  https://doi.org/10.1016/S0016-7037(00)01199-7 CrossRefGoogle Scholar
  33. Gorceix H (1884) Bacias terciárias d'agua doce nos arredores de Ouro Preto. Minas Gerais, Brazil Anais da Escola de Minas de Ouro Preto 3:95–114Google Scholar
  34. Goyne KW, Brantley SL, Chorover J (2010) Rare earth element release from phosphate minerals in the presence of organic acids. Chem Geol 278:1–14.  https://doi.org/10.1016/j.chemgeo.2010.03.011 CrossRefGoogle Scholar
  35. Greiffo W, Herrmann K, Müller G, Strauss KW (1984) Sr-gorceixite, a weathering product in rich iron ore s from the Córrego do Feijão mine, Minas Gerais, Brazil. Contrib Mineral Petrol 87:418–419CrossRefGoogle Scholar
  36. Hagemann SG, Angerer T, Duuring P, Rosière CA, Figueiredo e Silva RC, Lobato L, Hensler AS, Walde DHG (2016) BIF-hosted iron mineral system: a review. Ore Geol Rev 76:317–359.  https://doi.org/10.1016/j.oregeorev.2015.11.004 CrossRefGoogle Scholar
  37. Harder EC, Chamberlain RT (1915) The geology of the Central Minas Gerais, Brazil. J Geol 23:341–378 385-424CrossRefGoogle Scholar
  38. Hensler A-S, Hagemann SG, Brown PE, Rosière CA (2014) Using oxygen isotope chemistry to track hydrothermal processes and fluid sources in itabirite-hosted iron ore deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineral Deposita 49:293–311.  https://doi.org/10.1007/s00126-013-0486-z CrossRefGoogle Scholar
  39. Hensler AS, Rosière C, Hagemann S (2017) Iron oxide mineralization at the contact zone between phyllite and itabirite of the Pau Branco deposit, Quadrilátero Ferrífero, Brazil— implications for fluid-rock interaction during iron ore formation. Econ Geol 112:941–982CrossRefGoogle Scholar
  40. Hesterberg D (2010) Macroscale chemical properties and X-ray absorption spectroscopy of soil phosphorus. In: Singh B, Grafe M (eds) Synchrotron-Based Techniques in Soils and Sediments. Developments in Soil Science, vol 34. Elsevier Science & Technology, AmsterdamGoogle Scholar
  41. Hsi C-kD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941.  https://doi.org/10.1016/0016-7037(85)90088-2 CrossRefGoogle Scholar
  42. Janots E, Bernier F, Brunet F, Muñoz M, Trcera N, Berger A, Lanson M (2015) Ce (III) and Ce (IV) (re) distribution and fractionation in a laterite profile from Madagascar: insights from in situ XANES spectroscopy at the Ce LIII-edge. Geochim Cosmochim Acta 153:134–148.  https://doi.org/10.1016/j.gca.2015.01.009 CrossRefGoogle Scholar
  43. Karadağ MM, Kupeli S, Aryk F, Ayhan A, Zedef V, Doyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey) Chem Erde Geochem 69:143–159Google Scholar
  44. Lascelles DF (2012) Banded iron formation to high-grade iron ore : a critical review of supergene enrichment models. Aust J Earth Sci 59:1105–1125.  https://doi.org/10.1080/08120099.2012.739575 CrossRefGoogle Scholar
  45. Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154:1–12.  https://doi.org/10.1016/j.geoderma.2009.10.002 CrossRefGoogle Scholar
  46. Levett A, Gagen E, Shuster J, Rintoul L, Tobin M, Vongsvivut J, Bambery K, Vasconcelos P, Southam G (2016) Evidence of biogeochemical processes in iron duricrust formation. J S Am Earth Sci 71:131–142.  https://doi.org/10.1016/j.jsames.2016.06.016 CrossRefGoogle Scholar
  47. Lima MR, Salard-Cheboldaeff M (1981) Palynologie des bassins de Gandarela et Fonseca (Eocene de L’etat de Minas Gerais, Bresil) Boletim Instituto de Geociências Universidade de São Paulo 12:33–54Google Scholar
  48. Lindsay WL, Moreno EC (1960) Phosphate phase equilibria in soils. Soil Sci Soc Am J 24Google Scholar
  49. Lobato LM, Ribeiro-Rodrigues LC, Zuccheti M, Noce CM, Baltazar OF, LCd S, Pinto CP (2001) Brazil's premier gold province. Part I: the tectonic, magmatic and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36Google Scholar
  50. Lundager Madsen HE, Koch CB (2018) Kinetics of solution crystal growth of strengite, FePO 4 ,2H 2 O. J Cryst Growth 482:9–14.  https://doi.org/10.1016/j.jcrysgro.2017.10.014 CrossRefGoogle Scholar
  51. MacLean WH, Barrett TJ (1993) Lithogeochemical techniques using immobile elements. J Geochem Explor 48:109–133CrossRefGoogle Scholar
  52. Maizatto JR (2001) Análise bioestratigráfica, paleoecológica e sedimentológica das bacias Terciárias do Gandarela e Fonseca - Quadrilátero Ferrífero - com base nos aspectos palinológicos e sedimentares. PhD. In: Universidade Federal de Ouro PretoGoogle Scholar
  53. Margenot AJ, Singh BR, Rao IM, Sommer R (2017) Phosphorus fertilization and management in soils of Sub-Saharan Africa. In: Lal R, Stewart BA (eds) Soil Phosphorus. CRC Press, Boca Raton/Florida, pp 151–208Google Scholar
  54. Mongelli G, Boni M, Buccione R, Sinisi R (2014) Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities. Ore Geol Rev 63:9–21.  https://doi.org/10.1016/j.oregeorev.2014.04.012 CrossRefGoogle Scholar
  55. Monteiro HS (2017) Paleoenvironmental evolution of continental landscapes through combined high-resolution geochronology and ion microprobe analysis of goethite. PhD, The University of QueenslandGoogle Scholar
  56. Monteiro HS, Vasconcelos PM, Farley KA, Spier CA, Mello CL (2014) (U-Th)/He geochronology of goethite and the origin and evolution of Cangas. Geochim Cosmochim Acta 131:267–289.  https://doi.org/10.1016/j.gca.2014.01.036 CrossRefGoogle Scholar
  57. Monteiro HS, Vasconcelos PMP, Farley KA (2018) A combined (U-Th)/he and cosmogenic 3He record of landscape armoring by biogeochemical iron cycling. J Geophys Res: Earth Surf 123:298–323.  https://doi.org/10.1002/2017jf004282 CrossRefGoogle Scholar
  58. Morris RC (1985) Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes - a conceptual model. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 13. Elsevier, Amsterdam, pp 73–235Google Scholar
  59. Murad E, Schwertmann U (1986) The influence of Al-substitution and crystallinity on room temperature Mössbauer spectrum of hematite. Clays Clay Minerals 34:1–6CrossRefGoogle Scholar
  60. Nahon D, Tardy Y (1992) The ferruginous laterites. In: Butt CRM, Zeegers H (eds) Regolith exploration geochemistry in tropical and subtropical terrains, vol 4. Elsevier, pp 41–55Google Scholar
  61. Nahon DB (1986) Evolution of iron crusts in tropical landscapes. In: Colman SM, Dethier DP (eds) Rates of chemical weathering of rocks and minerals. Academic Press, Orlando, p 603Google Scholar
  62. Nakada R, Takahashi Y, Tanimizu M (2013) Isotopic and speciation study on cerium during its solid–water distribution with implication for Ce stable isotope as a paleo-redox proxy. Geochim Cosmochim Acta 103:49–62.  https://doi.org/10.1016/j.gca.2012.10.045 CrossRefGoogle Scholar
  63. Nakada R, Tanaka M, Tanimizu M, Takahashi Y (2017) Aqueous speciation is likely to control the stable isotopic fractionation of cerium at varying pH. Geochim Cosmochim Acta 218:273–290.  https://doi.org/10.1016/j.gca.2017.09.019 CrossRefGoogle Scholar
  64. Nath BN, Bau M, Rao BR, Rao CM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61:2375–2388CrossRefGoogle Scholar
  65. Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210CrossRefGoogle Scholar
  66. Nriagu JO (1984) Phosphate Minerals: Their properties and general modes of occurrence. In: Nriagu JO, Moore PB (eds) Phosphate Minerals. Springer-Verlag, Berlin, pp 1–136CrossRefGoogle Scholar
  67. Nunes APL, Pinto CLL, Valadão GES, Viana PRM (2012) Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Minerals Eng 39:206–212.  https://doi.org/10.1016/j.mineng.2012.06.004 CrossRefGoogle Scholar
  68. Nunes JA, Schaefer CE, Ferreira Junior WG, Neri AV, Correa GR, Enright NJ (2015) Soil-vegetation relationships on a banded ironstone ‘island’, Carajas plateau, Brazilian eastern Amazonia. An Acad Bras Cienc 87:2097–2110.  https://doi.org/10.1590/0001-376520152014-0106 CrossRefGoogle Scholar
  69. Parker C, Wolf J, Auler A, Barton H, Senko J (2013) Microbial reducibility of Fe (III) phases associated with the genesis of iron ore caves in the Iron quadrangle, Minas Gerais, Brazil. Minerals 3:395–411.  https://doi.org/10.3390/min3040395 CrossRefGoogle Scholar
  70. Pourmand A, Dauphas N, Ireland TJ (2012) A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and post-Archean Australian shale (PAAS) abundances. Chem Geol 291:38–54.  https://doi.org/10.1016/j.chemgeo.2011.08.011 CrossRefGoogle Scholar
  71. Ramanaidou E, Nahon D, Decarreau A, Melfi A (1996) Hematite and goethite from duricrusts developed by lateritic chemical weathering of Precambrian banded iron formations, Minas Gerais, Brazil. Clays Clay Minerals 44:22–31CrossRefGoogle Scholar
  72. Ramanaidou ER (2009) Genesis of lateritic iron ore from banded iron-formation in the Capanema mine (Minas Gerais, Brazil). Aust J Earth Sci 56:605–620.  https://doi.org/10.1080/08120090902806354 CrossRefGoogle Scholar
  73. Ribeiro DT (2003) Enriquecimento Supergênico de Formações Ferríferas Bandadas: Estruturas de Colapso e Desordem. Ph.D., Universidade Federal do Rio de JaneiroGoogle Scholar
  74. Ribeiro DT, Carvalho RM (2002) Simulation of weathered iron ore facies: integrating leaching concepts and geostatistical model. In: Armstrong M, Bettini C, Champigny N, Galli A, Remacre A (eds) Geostatistics Rio 2000. Kluwer, Dordrecht, pp 101–115CrossRefGoogle Scholar
  75. Ribeiro DT, Pires FRM, Carvalho RM (2002) Supergene iron ore and disorder. In: Iron ore 2002 Conference, Perth, Australasian Institute of Mining and Metallurgy, pp 81–90Google Scholar
  76. Rosière CA, Spier CA, Rios FJ, Suckau VE (2008) The itabirites of the Quadrilatero Ferrifero and related high-grade iron ore deposits: an overview. In: Hagemann S, Rosière C, Gutzmer J, Beukes NJ (eds) banded iron formation-related high-grade iron ore , vol 15. Rev Econ Geol pp 223–254Google Scholar
  77. Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64.  https://doi.org/10.1016/j.earscirev.2016.04.008 CrossRefGoogle Scholar
  78. Rott E, Steinmetz H, Metzger JW (2018) Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants. Sci Tot Environ 615:1176–1191.  https://doi.org/10.1016/j.scitotenv.2017.09.223 CrossRefGoogle Scholar
  79. Salgado AAR, Carmo FF (2015) Quadrilátero Ferrífero: a beautiful and neglected landscape between the gold and iron ore reservoirs. In: Salgado AAR, Santos LJC (eds) Vieira BC. Landscapes and Landforms of Brazil. World Geomorphological Landscapes. Springer, Dordrecht, pp 319–330.  https://doi.org/10.1007/978-94-017-8023-0 Google Scholar
  80. Sanglard JCD, Rosière CA, Santos JOS, McNaughton NJ, Fletcher IR (2014) A estrutura do segmento oeste da Serra do Curral, Quadrilátero Ferrífero, e o controle tectônico das acumulações compactas de alto teor em Fe. Geologia USP Série Científica 13:81–95.  https://doi.org/10.5327/z1519-874x201400010006 CrossRefGoogle Scholar
  81. Scatigna AV, de Oliveira Mota NF, Viana PL (2017) Buchnera carajasensis (Orobanchaceae), a new species from the canga vegetation of the Serra dos Carajás, Pará, Brazil. Kew Bull 72.  https://doi.org/10.1007/s12225-017-9698-1
  82. Shuster DL, Farley KA, Vasconcelos PM, Balco G, Monteiro HS, Waltenberg K, Stone JO (2012) Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth Planet Sci Lett 329-330:41–50.  https://doi.org/10.1016/j.epsl.2012.02.017 CrossRefGoogle Scholar
  83. Skirycz A, Castilho A, Chaparro C, Carvalho N, Tzotzos G, Siqueira JO (2014) Canga biodiversity, a matter of mining. Front Plant Sci 5:653.  https://doi.org/10.3389/fpls.2014.00653 CrossRefGoogle Scholar
  84. Spier CA, de Oliveira SMB, Rosière CA (2003) Geology and geochemistry of the Águas Claras and Pico Iron mines, Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineral Deposita 38:751–774.  https://doi.org/10.1007/s00126-003-0371-2 CrossRefGoogle Scholar
  85. Spier CA, de Oliveira SMB, Sial AN, Rios FJ (2007) Geochemistry and genesis of the banded iron formations of the Caue formation, Quadrilatero Ferrifero, Minas Gerais, Brazil. Precambrian Res 152:170–206.  https://doi.org/10.1016/j.precamres.2006.10.003 CrossRefGoogle Scholar
  86. Spier CA, de Oliveira SMB, Rosière CA, Ardisson JD (2008) Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil. Miner Deposita 43:229–254.  https://doi.org/10.1007/s00126-007-0157-z CrossRefGoogle Scholar
  87. Spier CA, Vasconcelos PM, Oliveira SMB (2006) 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilatero Ferrifero, Minas Gerais, Brazil. Chem Geol 234:79–104.  https://doi.org/10.1016/j.chemgeo.2006.04.006 CrossRefGoogle Scholar
  88. Stoops G (1983) SEM and light microscopic observations of minerals in bog-ores of the Belgian Campine. Geoderma 30:179–186CrossRefGoogle Scholar
  89. Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+-kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. Am J Sci 285:865–903CrossRefGoogle Scholar
  90. Vandenberghe RE, Verbeeck AE, De Grave E, Stiers W (1986) 57Fe Mössbauer effect study of Mn-substituted goethite and hematite. Hyperfine Interact 29:1157–1160CrossRefGoogle Scholar
  91. Vasconcelos PM, Carmo IO (2018) Calibrating denudation chronology through 40 Ar/ 39 Ar weathering geochronology. Earth Sci Rev 179:411–435.  https://doi.org/10.1016/j.earscirev.2018.01.003 CrossRefGoogle Scholar
  92. Vermeire ML, Cornu S, Fekiacova Z, Detienne M, Delvaux B, Cornélis JT (2016) Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem Geol 446:163–174.  https://doi.org/10.1016/j.chemgeo.2016.06.008 CrossRefGoogle Scholar
  93. Violante A, Del Gaudio S, Pigna M, Ricciardella M, Banerjee D (2007) Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron (III) precipitates. Environ Sci Technol 41:8275–8280CrossRefGoogle Scholar
  94. Vuillemin A, Ariztegui D, De Coninck AS, Lücke A, Mayr C, Schubert CJ (2013) Origin and significance of diagenetic concretions in sediments of Laguna Potrok Aike, southern Argentina. J Paleolimnol 50:275–291.  https://doi.org/10.1007/s10933-013-9723-9 CrossRefGoogle Scholar
  95. Weihrauch C, Opp C (2018) Ecologically relevant phosphorus pools in soils and their dynamics: the story so far. Geoderma 325:183–194.  https://doi.org/10.1016/j.geoderma.2018.02.047 CrossRefGoogle Scholar
  96. Yuan F, Cai Y, Yang S, Liu Z, Chen L, Lang Y, Wang X, Wang S (2016) Simultaneous sequestration of uranyl and arsenate at the goethite/water interface. J Radioanal Nucl Chem 311:815–831.  https://doi.org/10.1007/s10967-016-5086-9 CrossRefGoogle Scholar
  97. Yusoff ZM, Ngwenya BT, Parsons I (2013) Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem Geol 349-350:71–86.  https://doi.org/10.1016/j.chemgeo.2013.04.016 CrossRefGoogle Scholar
  98. Zhang S, Liu C, Luan Z, Peng X, Ren H, Wang J (2008) Arsenate removal from aqueous solutions using modified red mud. J Hazard Mater 152:486–492CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesThe University of QueenslandSaint LuciaAustralia
  2. 2.Instituto de GeociênciasCampus da UFMGBelo HorizonteBrazil

Personalised recommendations