Advertisement

Quartz veins with associated Sb-Pb-Ag±Au mineralization in the Schwarzwald, SW Germany: a record of metamorphic cooling, tectonic rifting, and element remobilization processes in the Variscan belt

  • T. Epp
  • B. F. Walter
  • M. Scharrer
  • G. Lehmann
  • K. Henze
  • C. Heimgärtner
  • W. Bach
  • G. Markl
Article
  • 187 Downloads

Abstract

A combination of textural observations from 38 Permian Sb-Pb-Ag±Au-bearing quartz veins in the Schwarzwald (SW Germany) with isotopic, fluid inclusion, and geochemical data allows to refine genetic models for this common type of mineralization, to understand the origin of mineralogical diversity and the correlation with large scale tectonic events. Textures record four main mineralization stages: (I) Fe-As(-Sb±Au), (II) Pb-Zn-Cu, (III) Pb-Sb, and (IV) Ag-Sb. Stage I sulfides, dominated by pyrite and arsenopyrite, formed due to cooling of low-salinity metamorphic fluids during the Permian with maximum homogenization temperatures of 400 °C. Invisible gold in arsenopyrite, pyrite, marcasite, and stibnite was remobilized and locally precipitated as electrum at the end of stage I. Minerals of stages II and III comprise a rich diversity of Sb-bearing sulfosalts including, e.g., bournonite, zinkenite, and jamesonite. This assemblage formed during Jurassic times due to mixing of high-salinity, mid- and upper-crustal fluids (up to 27 wt% NaCl+CaCl2) with homogenization temperatures between 50 and 250 °C. Stage III is marked by a rich variety of Pb-Sb sulfosalts. Its local abundance is directly related to the presence of stage I mineralization and its extent of remobilization during a significant influx of Pb in the Jurassic-Cretaceous. The formation of the Upper Rhine Graben during the Tertiary reactivated especially NE-SW-oriented veins. Percolating Ag-rich fluids reacted with earlier stage III Pb-Sb sulfosalts forming Ag-rich minerals (stage IV) such as miargyrite, pyrargyrite, and stephanite. The transition from metamorphic fluids to basinal, saline (e.g., Pb-bearing) brines over hundreds of millions of years as is shown in this study and present in other Variscan occurrences indicates a possibly typical poly-stage characteristic of Sb deposits worldwide, which has, however, not been investigated in detail so far.

Keywords

Stibnite Gold Remobilization Fluid cooling Fluid mixing 

Notes

Acknowledgements

We would like to thank Steffen Hagemann and Wolfgang Werner for their constructive comments that improved this manuscript significantly. Bernd Lehmann and Jens Gutzmer are thanked for careful and thoughtful editorial handling of this manuscript. We are grateful to Thomas Wenzel for the assistance with the electron microprobe. Simone Schafflick and Per Jeiseke are thanked for sample preparation. We would also like to thank Bernd Steinhilber and Gabriele Stoschek for isotope measurements and their help with crush leach analyses and technical support. Further thanks go Thomas Seifert for the possibility to analyze fluid inclusions in stibnite and sphalerite at the TU Bergakademie Freiberg and to Matthias Bauer and Lisa Richter for their help and supervision. Olga Apukhtina is thanked for data acquisition at the Münstergrund locality.

Supplementary material

126_2018_855_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)
126_2018_855_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 19 kb)
126_2018_855_MOESM3_ESM.pdf (208.1 mb)
ESM 3 (PDF 213144 kb)
126_2018_855_MOESM4_ESM.docx (22 kb)
ESM 4 (DOCX 21.7 kb)
126_2018_855_MOESM5_ESM.xlsx (12 kb)
ESM 5 (XLSX 11 kb)
126_2018_855_MOESM6_ESM.xlsx (15 kb)
ESM 6 (XLSX 14 kb)
126_2018_855_MOESM7_ESM.xlsx (19.9 mb)
ESM 7 (XLSX 20398 kb)
126_2018_855_MOESM8_ESM.xlsx (5.8 mb)
ESM 8 (XLSX 5935 kb)

References

  1. Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73.  https://doi.org/10.1016/S0024-4937(99)00052-3 CrossRefGoogle Scholar
  2. Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320.  https://doi.org/10.1130/0016-7606(1977)88<1305:LPSFIS>2.0.CO;2 CrossRefGoogle Scholar
  3. Ashley P, Cook N, Hill R (1990) Occurrence and significance of aurostibite in Sb-Au ore from Hillgrove, New-South-Wales, Australia. Neues JB Mineral Monat:537–551Google Scholar
  4. Ashley P, Creagh C, Ryan C (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineral Deposita 35:285–301CrossRefGoogle Scholar
  5. Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids 7:123–147.  https://doi.org/10.1111/j.1468-8123.2007.00169.x CrossRefGoogle Scholar
  6. Baltukhaev GI, Solozhenkin PM (2009) Concentration of gold-antimony ores in the Sakha Republic (Yakutia). Russ J Non-Ferr Met+ 50:199–205.  https://doi.org/10.3103/S106782120903002X CrossRefGoogle Scholar
  7. Behr H-J, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany—a study by neutron activation analysis. Chem Geol 61:65–77.  https://doi.org/10.1016/0009-2541(87)90028-3 CrossRefGoogle Scholar
  8. Behr H-J, Engel W, Franke W, Giese P, Weber K (1984) The Variscan belt in Central Europe: main structures, geodynamic implications, open questions. Tectonophysics 109:15–40.  https://doi.org/10.1016/0040-1951(84)90168-9 CrossRefGoogle Scholar
  9. Boiron M, Cathelineau M, Dubessy J, Bastoul A (1990) Fluids in Hercynian Au veins from the French Variscan belt. Mineral Mag 54:231–243CrossRefGoogle Scholar
  10. Bons PD, Fusswinkel T, Gomez-Rivas E, Markl G, Wagner T, Walter B (2014) Fluid mixing from below in unconformity-related hydrothermal ore deposits. Geology 42:1035–1038.  https://doi.org/10.1130/G35708.1 CrossRefGoogle Scholar
  11. Bortnikov N, Gamynin G, Vikent’eva O, Prokof’ev VY, Prokop’ev A (2010) The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold-quartz and epithermal stibnite ores. Geol Ore Deposit+ 52:339–372CrossRefGoogle Scholar
  12. Bouchot V, Gros Y, Bonnemaison M (1989) Structural controls on the auriferous shear zones of the Saint Yrieix District, Massif Central, France; evidence from the Le Bourneix and Laurieras gold deposits. Econ Geol 84:1315–1327.  https://doi.org/10.2113/gsecongeo.84.5.1315 CrossRefGoogle Scholar
  13. Brander T (2000) U/HE-chronologische Fallstudien an Eisen-und Manganerzen Department of Geoscience. Ruprecht-Karls University Heidelberg, pp 275.Google Scholar
  14. Bril H (1982) Fluid inclusions study of Sn–W–Au, Sb– and Pb–Zn mineralizations from the Brioude-Massiac district (French Massif Central). Tscher Miner Petrog 30:1–16.  https://doi.org/10.1007/BF01082422 CrossRefGoogle Scholar
  15. Bril H, Beaufort D (1989) Hydrothermal alteration and fluid circulation related to W, Au, and Sb vein mineralization, Haut Allier, Massif Central, France. Econ Geol 84:2237–2251.  https://doi.org/10.2113/gsecongeo.84.8.2237 CrossRefGoogle Scholar
  16. Bucher K, Stober I (2002) Water-rock reaction experiments with Black Forest gneiss and granite Water-rock interaction Springer, pp 61–95.CrossRefGoogle Scholar
  17. Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids 10:241–253.  https://doi.org/10.1007/s00531-008-0328-x. CrossRefGoogle Scholar
  18. Bucher K, Zhu Y, Stober I (2009) Groundwater in fractured crystalline rocks, the Clara mine, Black Forest (Germany). Int J Earth Sci 98:1727–1739.  https://doi.org/10.1111/j.1468-8123.2010.00279.x. CrossRefGoogle Scholar
  19. Burisch M, Marks MA, Nowak M, Markl G (2016) The effect of temperature and cataclastic deformation on the composition of upper crustal fluids—an experimental approach. Chem Geol 433:24–35.  https://doi.org/10.1016/j.chemgeo.2016.03.031 CrossRefGoogle Scholar
  20. Burisch M, Hartmann A, Bach W, Krolop P, Krause J, Gutzmer J (2018, this issue) Genesis of hydrothermal silver-antimony-sulfide veins of the Bräunsdorf sector of the Freiberg District, Germany. Mineral DepositaGoogle Scholar
  21. Chicharro E, Boiron M-C, López-García JÁ, Barfod DN, Villaseca C (2016) Origin, ore forming fluid evolution and timing of the Logrosán Sn–(W) ore deposits (Central Iberian Zone, Spain). Ore Geol Rev 72:896–913.  https://doi.org/10.1016/j.oregeorev.2015.09.020. CrossRefGoogle Scholar
  22. Chovan M, Hurai V, Sachan H, Kantor J (1995) Origin of the fluids associated with granodiorite-hosted, Sb-As-Au-W mineralisation at Dúbrava (Nízke Tatry Mts, Western Carpathians). Mineral Deposita 30:48–54.  https://doi.org/10.1007/BF00208876 CrossRefGoogle Scholar
  23. Chovan M, Majzlan J, Kristin J, Ragan M, Siman P (1998) Pb-Sb and Pb-Sb-Bi sulfosalts and associated sulphides from Dúbrava antimony deposit, Nízke Tatry Mts Acta Geologica Universitatis Comenianae.Google Scholar
  24. Cidu R, Biddau R, Dore E, Vacca A, Marini L (2014) Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Sci Total Environ 497:319–331.  https://doi.org/10.1016/j.scitotenv.2014.07.117. CrossRefGoogle Scholar
  25. Clayton R, Scrivener R, Stanley C (1990) Mineralogical and preliminary fluid inclusion studies of lead-antimony mineralisation in north Cornwall. Proc Ussher 7:258–262Google Scholar
  26. Comsti E, Taylor G (1984) Implications of fluid inclusion data on the origin of the Hillgrove gold-antimony deposits. NSW Proceedings of the Australasian Institute of Mining & Metallurgy 289:195–203Google Scholar
  27. Couto H, Roger G, Moëlo Y, Bril H (1990) Le district à antimoine-or Dúrico-Beirão (Portugal): évolution paragénétique et géochimique; implications métallogéniques. Mineral Deposita 25:S69–S81.  https://doi.org/10.1007/BF00205252 CrossRefGoogle Scholar
  28. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703.  https://doi.org/10.1126/science.133.3465.1702 CrossRefGoogle Scholar
  29. Dennert V (1993) Der Bergbau vom Mittelalter bis heute im Auftrag der Stadt Sulzburg von der Anna Hugo Bloch-Stiftung Red Anneliese Müller and Jost Grosspietsch Bd 1:119–221.Google Scholar
  30. Dill H (1985) Antimoniferous mineralization from the Mid-European Saxothuringian Zone: mineralogy, geology, geochemistry and ensialic origin. Geol Rundsch 74:447–466.  https://doi.org/10.1007/BF01821205 CrossRefGoogle Scholar
  31. Dill H (1986) Die Vererzung am Westrand der Böhmischen Masse. Geologisches Jahrbuch Reihe D 500:73Google Scholar
  32. Dill HG (1993) Die Antimonvorkommen der mitteleuropäischen Alpiden und Varisziden. Z Dtsch Geol Ges:434–450Google Scholar
  33. Dill H (1998) Evolution of Sb mineralisation in modern fold belts: a comparison of the Sb mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia). Mineral Deposita 33:359–378.  https://doi.org/10.1007/s001260050155 CrossRefGoogle Scholar
  34. Dill H, Weiser T, Bernhardt I, Kilibarda CR (1995) The composite gold-antimony vein deposit at Kharma (Bolivia). Econ Geol 90:51–66.  https://doi.org/10.2113/gsecongeo.90.1.51 CrossRefGoogle Scholar
  35. Distanov E, Stebleva A, Obolenskii A, Kochetkova K, Borisenko A (1975) Origin of the Uderei gold-antimony field in the Yenisei Ridge area. Geol Geofiz 16:19–27Google Scholar
  36. Doblas M, López-Ruiz J, Oyarzun R, Mahecha V, Moya YS, Hoyos M, Cebriá J-M, Capote R, Enrile JH, Lillo J (1994) Extensional tectonics in the Central Iberian Peninsula during the Variscan to Alpine transition. Tectonophysics 238:95–116.  https://doi.org/10.1016/0040-1951(94)90051-5. CrossRefGoogle Scholar
  37. Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20.  https://doi.org/10.1016/j.gexplo.2011.09.009. CrossRefGoogle Scholar
  38. Gammons C, Williams-Jones A (1997) Chemical mobility of gold in the porphyry-epithermal environment. Econ Geol 92:45–59.  https://doi.org/10.2113/gsecongeo.92.1.45 CrossRefGoogle Scholar
  39. Geyer OF, Gwinner MP, Geyer M, Nitsch E, Simon T (2011) Geologie von Baden-Württemberg. 626.Google Scholar
  40. Goldstein RH, Reynolds TJ (1994) Fluid inclusion microthermometry.CrossRefGoogle Scholar
  41. Guillemette N, Williams-Jones A (1993) Genesis of the Sb-W-Au deposits at Ixtahuacan, Guatemala: evidence from fluid inclusions and stable isotopes. Mineral Deposita 28:167–180CrossRefGoogle Scholar
  42. Gumiel P, Arribas A (1987) Antimony deposits in the Iberian Peninsula. Econ Geol 82:1453–1463CrossRefGoogle Scholar
  43. Hagemann SG, Lüders V (2003) PTX conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: conventional and infrared microthermometric constraints. Mineral Deposita 38:936–952.  https://doi.org/10.1007/s00126-003-0351-6 CrossRefGoogle Scholar
  44. Hagemann SG, Gebre-Mariam M, Groves DI (1994) Surface-water influx in shallow-level Archean lode-gold deposits in Western, Australia. Geology 22:1067–1070CrossRefGoogle Scholar
  45. Hann H, Chen F, Zedler H, Frisch W, Loeschke J (2003) The Rand Granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842.  https://doi.org/10.1007/s00531-003-0361-8 CrossRefGoogle Scholar
  46. Irber W, Lehrberger G (1993) Das Gold-Erzrevier von Goldkronach-Brandholz im Fichtelgebirge: Ein modifiziertes Genesemodell. Eur J Mineral 5:225Google Scholar
  47. Kaiman S, Harris D, Dutrizac J (1980) Stibivanite, a new mineral from Lake George antimony deposit, New Brunswick. Can Mineral 18:329–332Google Scholar
  48. Kalt A, Altherr R, Hanel M (2000) The Variscan basement of the Schwarzwald. Eur J Mineral 12:1–43CrossRefGoogle Scholar
  49. Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393.  https://doi.org/10.1002/hyp.217 CrossRefGoogle Scholar
  50. Knipe R (1993) The influence of fault zone processes and diagenesis on fluid flow. In: Horbury AD and Robinson AG (ed) Diagenesis and Basin Development, Vol 36, American Association of Petroleum Geologists, pp 135-151Google Scholar
  51. Kolchugin A, Immenhauser A, Walter B, Morozov V (2016) Diagenesis of the palaeo-oil-water transition zone in a Lower Pennsylvanian carbonate reservoir: constraints from cathodoluminescence microscopy, microthermometry, and isotope geochemistry. Mar Pet Geol 72:45–61CrossRefGoogle Scholar
  52. Kontak DJ, Horne RJ, Smith PK (1996) Hydrothermal characterization of the West Gore Sb-Au deposit, Meguma Terrane, Nova Scotia, Canada. Econo Geol 91(7):1239–1262.  https://doi.org/10.2113/gsecongeo.91.7.1239 CrossRefGoogle Scholar
  53. Kontny A, Friedrich G, Behr H, Hd W, Horn E, Möller P, Zulauf G (1997) Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB). Journal of Geophysical Research: Solid Earth 102:18323–18336.  https://doi.org/10.1029/96JB03395 CrossRefGoogle Scholar
  54. Kovalev K, Kalinin YA, Naumov E, Kolesnikova M, Korolyuk V (2011) Gold-bearing arsenopyrite in eastern Kazakhstan gold-sulfide deposits. Russ Geol Geophys 52:178–192CrossRefGoogle Scholar
  55. Krolop P, Burisch M, Richter L, Fritzke B, Seifert T (2018) Antimoniferous vein-type mineralization of the Berga Antiform, Eastern-Thuringia, Germany: A fluid inclusion study. Chem Geol.  https://doi.org/10.1016/j.chemgeo.2018.02.034
  56. Kroner U, Romer R (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329.  https://doi.org/10.1016/j.gr.2013.03.001 CrossRefGoogle Scholar
  57. Krützfeldt B (1985) Beobachtungen an Vererzungen in Sedimenten der Zone Badenweiler-Lenzkrich. Der Aufschluss 36:261–265Google Scholar
  58. Kulick J, Meisl S, Theuerjahr A-K (1997) Die Goldlagerstätte des Eisenberges: südwestlich von Korbach. Hessisches Landesamt für BodenforschungGoogle Scholar
  59. Lehrberger G (1995) The gold deposits of Europe Prehistoric gold in Europe. Springer, pp 115–144.Google Scholar
  60. Lentz DR, Thorne K, Yang X-M (2002) Preliminary analysis of the controls on the various episodes of gold mineralization at the Lake George antimony deposit, New Brunswick Current research:02–01Google Scholar
  61. Ligang Z, Jingxiu L, Huanbo Z, Zhensheng C (1989) Oxygen isotope fractionation in the quartz-water-salt system. Econ Geol 84:1643–1650.  https://doi.org/10.2113/gsecongeo.84.6.1643 CrossRefGoogle Scholar
  62. Malavieille J, Guihot P, Costa S, Lardeaux J, Gardien V (1990) Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177:139–149.  https://doi.org/10.1016/0040-1951(90)90278-G CrossRefGoogle Scholar
  63. Markl G (2017) Schwarzwald - Lagerstätten und Mineralien aus vier Jahrhunderten. Band 4 - Südlicher Schwarzwald., BodeGoogle Scholar
  64. Markl G, Burisch M, Neumann U (2016) Natural fracking and the genesis of five-element veins. Mineral Deposita 51:703–712.  https://doi.org/10.1007/s00126-016-0662-z CrossRefGoogle Scholar
  65. Marks MA, Marschall HR, Schühle P, Guth A, Wenzel T, Jacob DE, Barth M, Markl G (2013) Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): the importance of major element composition, sector zoning, and fluid or melt composition. Chem Geol 344:73–90.  https://doi.org/10.1016/j.chemgeo.2013.02.025 CrossRefGoogle Scholar
  66. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337.  https://doi.org/10.1016/0040-1951(91)90328-P CrossRefGoogle Scholar
  67. Metz R, Richter M (1957) Die Blei-Zink-Erzgänge des Schwarzwaldes. Beihefte zum Geologischen Jahrbuch Beiheft 29:277Google Scholar
  68. Meyer J, Hohl J-L (1994) Minerals engineering Reviews in mineralogy and geochemistry. Editions du RhinGoogle Scholar
  69. Meyer M, Brockamp O, Clauer N, Renk A, Zuther M (2000) Further evidence for a Jurassic mineralizing event in Central Europe: K–Ar dating of hydrothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest, Germany. Mineral Deposita 35:754–761.  https://doi.org/10.1007/s001260050277 CrossRefGoogle Scholar
  70. Moravek P, Pouba Z (1987) Precambrian and Phanerozoic history of gold mineralization in the Bohemian Massif. Econ Geol 82:2098–2114.  https://doi.org/10.2113/gsecongeo.82.8.2098 CrossRefGoogle Scholar
  71. Munoz M, Shepherd T (1987) Fluid inclusion study of the bournac polymetallic (Sb-As-Pb-Zn-Fe-Cu...) vein deposit (montagne noire, France). Mineral Deposita 22:11–17CrossRefGoogle Scholar
  72. Munoz M, Courjault-Radé P, Tollon F (1992) The massive stibnite veins of the French Palaeozoic basement: a metallogenic marker of Late Variscan brittle extension. Terra Nova 4:171–177.  https://doi.org/10.1111/j.1365-3121.1992.tb00468.x CrossRefGoogle Scholar
  73. Neiva A, Andráš P, Ramos J (2008) Antimony quartz and antimony–gold quartz veins from northern Portugal. Ore Geol Rev 34:533–546.  https://doi.org/10.1016/j.oregeorev.2008.03.004 CrossRefGoogle Scholar
  74. Obolensky A, Gushchina L, Borisenko A, Borovikov A, Pavlova G (2007) Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions. Russ Geol Geophys 48:992–1001.  https://doi.org/10.1016/j.rgg.2007.11.006 CrossRefGoogle Scholar
  75. Ortega L, Vindel E (1995) Evolution of ore-forming fluids associated with late Hercynian antimony deposits in central/western Spain; case study of Mari Rosa and El Juncalon. Eur J Mineral 7:655–673 0935–1221/95/0007–0655CrossRefGoogle Scholar
  76. Ortega L, Vindel E, Beny C (1991) COHN fluid inclusions associated with gold-stibnite mineralization in low-grade metamorphic rocks, Mari Rosa mine, Caceras, Spain. Mineral Mag 55:235–247.  https://doi.org/10.1180/minmag.1991.055.379.12. CrossRefGoogle Scholar
  77. Pascher G (1985) Gold aus dem Fichtelgebirge. Ein montanhistorischer und mineralogischer Überblick. Lapis 10:25–42Google Scholar
  78. Pfaff K, Romer RL, Markl G (2009) U-Pb ages of ferberite, chalcedony, agate, ‘U-mica’and pitchblende: constraints on the mineralization history of the Schwarzwald ore district. Eur J Mineral 21:817–836.  https://doi.org/10.1127/0935-1221/2009/0021-1944 CrossRefGoogle Scholar
  79. Pfaff K, Hildebrandt LH, Leach DL, Jacob DE, Markl G (2010) Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineral Deposita 45:647–666.  https://doi.org/10.1007/s00126-010-0296-5 CrossRefGoogle Scholar
  80. Pfaff K, Koenig A, Wenzel T, Ridley I, Hildebrandt LH, Leach DL, Markl G (2011) Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: incorporation mechanisms and implications for their genesis. Chem Geol 286:118–134.  https://doi.org/10.1016/j.chemgeo.2011.04.018. CrossRefGoogle Scholar
  81. Pochon A, Gapais D, Gloaguen E, Gumiaux C, Branquet Y, Cagnard F, Martelet G (2016) Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova 28:138–145.  https://doi.org/10.1111/ter.12201 CrossRefGoogle Scholar
  82. Rajchl M, Uličný D, Grygar R, Mach K (2009) Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Res 21:269–294.  https://doi.org/10.1111/j.1365-2117.2008.00393.x CrossRefGoogle Scholar
  83. Romer RL, Kroner U (2017) Paleozoic gold in the Appalachians and Variscides. Ore Geol Rev 92:475–505.  https://doi.org/10.1016/j.oregeorev.2017.11.021 CrossRefGoogle Scholar
  84. Roscher M, Schneider JW (2006) Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of Central Europe in a regional and global context. Geol Soc Lond, Spec Publ 265:95–136.  https://doi.org/10.1144/GSL.SP.2006.265.01.05 CrossRefGoogle Scholar
  85. Rumble D, Hoering TC (1994) Analysis for oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphere. Acc Chem Res 27:237–241CrossRefGoogle Scholar
  86. Schroyen K, Muchez P (2000) Evolution of metamorphic fluids at the Variscan fold-and-thrust belt in eastern Belgium. Sediment Geol 131:163–180.  https://doi.org/10.1016/S0037-0738(99)00133-5 CrossRefGoogle Scholar
  87. Schwarz-Schampera U (2014) Antimony. Critical metals handbook:70–98.CrossRefGoogle Scholar
  88. Seal I, Robert R, Robie RA, Barton Jr PB, Hemingway B (1992) Superambient heat capacities of synthetic stibnite, berthierite, and chalcostibite: revised thermodynamic properties and implications for phase equilibria.Google Scholar
  89. Seward TM (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim Cosmochim Acta 37:379–399.  https://doi.org/10.1016/0016-7037(73)90207-X CrossRefGoogle Scholar
  90. Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357.  https://doi.org/10.1016/0016-7037(90)90160-M CrossRefGoogle Scholar
  91. Sheppard SM (1986) Characterization and isotopic variations in natural waters. Rev Mineral Geochem 16:165–183Google Scholar
  92. Staude S, Wagner T, Markl G (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Mineral 45:1147–1176.  https://doi.org/10.2113/gscanmin.45.5.1147 CrossRefGoogle Scholar
  93. Staude S, Bons PD, Markl G (2009) Hydrothermal vein formation by extension-driven dewatering of the middle crust: an example from SW Germany. Earth Planet Sci Lett 286:387–395.  https://doi.org/10.1016/j.epsl.2009.07.012 CrossRefGoogle Scholar
  94. Staude S, Dorn A, Pfaff K, Markl G (2010a) Assemblages of Ag–Bi sulfosalts and conditions of their formation: the type locality of schapbachite (Ag0. 4Pb0. 2Bi0. 4S) and neighboring mines in the Schwarzwald ore district, southern Germany. Can Mineral 48:441–466.  https://doi.org/10.3749/canmin.48.3.441 CrossRefGoogle Scholar
  95. Staude S, Mordhorst T, Neumann R, Prebeck W, Markl G (2010b) Compositional variation of the tennantite–tetrahedrite solidsolution series in the Schwarzwald ore district (SW Germany): the role of mineralization processes and fluid source. doi:  https://doi.org/10.1180/minmag.2010.074.2.309.CrossRefGoogle Scholar
  96. Staude S, Werner W, Mordhorst T, Wemmer K, Jacob DE, Markl G (2012) Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution. Mineral Deposita 47:251–276.  https://doi.org/10.1007/s00126-011-0365-4 CrossRefGoogle Scholar
  97. Steele-MacInnis M, Bodnar R, Naden J (2011) Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim Cosmochim Acta 75:21–40.  https://doi.org/10.1016/j.gca.2010.10.002 CrossRefGoogle Scholar
  98. Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HOKIEFLINCS_H2O-NACL: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput Geosci 49:334–337CrossRefGoogle Scholar
  99. Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254.  https://doi.org/10.1016/S0883-2927(98)00045-6. CrossRefGoogle Scholar
  100. Taylor H, Barnes H (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Geochemistry of hydrothermal ore deposits 3:229–302Google Scholar
  101. Todt W (1976) Zirkon U/Pb-Alter des Malsburg-Granits vom Südschwarzwald. Neues Jb Miner Abh 12:532–544Google Scholar
  102. Tomkins AG, Pattison DR, Zaleski E (2004) The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ Geol 99:1063–1084CrossRefGoogle Scholar
  103. Wagner T, Cook N (2000) Late-Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems. Mineral Deposita 35:206–222.  https://doi.org/10.1007/s001260050016 CrossRefGoogle Scholar
  104. Wagner T, Fusswinkel T, Wälle M, Heinrich CA (2016) Microanalysis of fluid inclusions in crustal hydrothermal systems using laser ablation methods. Elements 12:323–328.  https://doi.org/10.2113/gselements.12.5.323 CrossRefGoogle Scholar
  105. Walenta K (1957) Die antimonerzführenden Gänge des Schwarzwaldes. Jahreshefte des Geologischen Landesamtes Baden-Württemberg 2:13–67Google Scholar
  106. Walenta K, Sawatzki G, Dayal R (1970) Die Wolframerzvorkommen im Gebiet des Nordracher Granitmassivs und seiner Umgebung. Jahresh Geol Landesamt Baden-Wuerttemberg 12:207–226Google Scholar
  107. Walter BF, Immenhauser A, Geske A, Markl G (2015) Exploration of hydrothermal carbonate magnesium isotope signatures as tracers for continental fluid aquifers, Schwarzwald mining district, SW Germany. Chem Geol 400:87–105.  https://doi.org/10.1016/j.chemgeo.2015.02.009 CrossRefGoogle Scholar
  108. Walter BF, Burisch M, Markl G (2016) Long-term chemical evolution and modification of continental basement brines—a field study from the Schwarzwald, SW Germany. Geofluids 16:604–623.  https://doi.org/10.1111/gfl.12167 CrossRefGoogle Scholar
  109. Walter BF, Burisch M, Marks MAW, Markl G (2017) Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany. Mineral Deposita 52:1191–1204.  https://doi.org/10.1007/s00126-017-0719-7 CrossRefGoogle Scholar
  110. Walter BF, Burisch M, Fusswinkel T, Marks MAW, Steele-MacInnis M, Wälle M, Apukhtina OB, Markl G (2018a) Multi-reservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany. J Geochem Explor 186:158–186.  https://doi.org/10.1016/j.gexplo.2017.12.004 CrossRefGoogle Scholar
  111. Walter BF, Kortenbruck P, Zeitvogel C, Wälle M, Mertz-Kraus R, Markl G (submitted 2018b) Chemical evolution of ore-forming brines—basement leaching, metal provenance, and the redox link between barren and ore-bearing hydothermal veins. Chem GeolGoogle Scholar
  112. Walter BF, Gerdes A, Kleinhanns IC, Dunkl I, von Eynatten H, Kreissl S, Markl G (2018c) The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting: fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany. Geochim Cosmochim Acta.  https://doi.org/10.1016/j.gca.2018.08.012 CrossRefGoogle Scholar
  113. Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. J Geol Soc 161:695–702.  https://doi.org/10.1144/0016-764903-087 CrossRefGoogle Scholar
  114. Werner W (2002) Die Erzlagerstätte Schauinsland bei Freiburg im Breisgau: Bergbau, Geologie, Hydrogeologie, Mineralogie, Geochemie, Tektonik und Lagerstättenentstehung. Aedificatio-Verlag.Google Scholar
  115. Werner W, Franzke HJ (2001) Postvariszische bis neogene Bruchtektonik und Mineralisation im südlichen Zentralschwarzwald. Z Dtsch Geol Ges:405–437.Google Scholar
  116. Werner W, Schlaegel-Blaut P, Rieken R (1990) Verbreitung und Ausbildung von Wolfram-Mineralisationen im Kristallin des Schwarzwaldes. Jahreshefte des Geologischen Landesamtes Baden-Württemberg 32:17–61Google Scholar
  117. Wetzel A, Allenbach R, Allia V (2003) Reactivated basement structures affecting the sedimentary facies in a tectonically “quiescent” epicontinental basin: an example from NW Switzerland. Sediment Geol 157:153–172.  https://doi.org/10.1016/S0037-0738(02)00230-0 CrossRefGoogle Scholar
  118. Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287.  https://doi.org/10.2113/gselements.5.5.281 CrossRefGoogle Scholar
  119. Wittern A, Journée J-R (1997) Mineralien finden in den Vogesen: ein Führer zu über 40 Fundstellen. Sven Von Loga, KölnGoogle Scholar
  120. Wood SA, Crerar DA, Borcsik MP (1987) Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen-tite-molybdenite in H2O-NaCl-CO2 solutions from 200 degrees to 350 degrees C. Econ Geol 82(7):1864–1887.  https://doi.org/10.2113/gsecongeo.82.7.1864 CrossRefGoogle Scholar
  121. Yang X-M, Lentz DR, Chi G, Kyser TK (2004) Fluid–mineral reaction in the Lake George Granodiorite, New Brunswick, Canada: implications for Au–W–Mo–Sb mineralization. Can Mineral 42:1443–1464CrossRefGoogle Scholar
  122. Yardley BW (2005) 100th Anniversary Special Paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632.  https://doi.org/10.2113/gsecongeo.100.4.613 CrossRefGoogle Scholar
  123. Zachariáš J, Moravek P, Gadas P, Pertoldova J (2014) The Mokrsko-West gold deposit, Bohemian Massif, Czech Republic: mineralogy, deposit setting and classification. Ore Geol Rev 58:238–263.  https://doi.org/10.1016/j.oregeorev.2013.11.005 CrossRefGoogle Scholar
  124. Zhai W, Sun X, Yi J, Zhang X, Mo R, Zhou F, Wei H, Zeng Q (2014) Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geol Rev 58:68–90CrossRefGoogle Scholar
  125. Zhu Y-N, Peng J-T (2015) Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au–Sb–W deposit, western Hunan, South China. Ore Geol Rev 65:55–69CrossRefGoogle Scholar
  126. Zhu Y, An F, Tan J (2011) Geochemistry of hydrothermal gold deposits: a review. Geosci Front 2:367–374.  https://doi.org/10.1016/j.gsf.2011.05.006 CrossRefGoogle Scholar
  127. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111.  https://doi.org/10.1016/0040-1951(92)90338-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeosciencesEberhard Karls University TübingenTübingenGermany
  2. 2.Department of GeosciencesUniversity of BremenBremenGermany

Personalised recommendations