Advertisement

Jurassic ore-forming systems during the Tethyan orogeny: constraints from the Shamlugh deposit, Alaverdi district, Armenia, Lesser Caucasus

  • M. F. Calder
  • R. Moritz
  • A. Ulyanov
  • M. Chiaradia
  • J. E. Spangenberg
  • R. L. Melkonyan
Article
  • 64 Downloads

Abstract

The Shamlugh polymetallic deposit located in the Alaverdi mining district, Armenia, is hosted by Middle Jurassic magmatic rocks of the Somkheto–Karabakh island arc, Lesser Caucasus. Lithogeochemistry and radiogenic isotope geochemistry indicate a subduction setting with an evolution from tholeitiic to transitional Middle Jurassic magmatism to calc-alkaline to high-K calc-alkaline Late Jurassic magmatism. A progressively more juvenile mantellic input in the magmatic source is noted. Ore consists of stratabound massive sulfide ore bodies, ore-bearing breccia, stockwork-style mineralization, and disseminated ore hosted by a pyroclastic host rock unit below a subvolcanic rhyolitic sill. Towards depth, the stratabound ore is connected to subvertical high-grade sulfide veins hosted by basaltic andesitic, andesitic, and dacitic tuff and lava breccia. Ore minerals include principally pyrite and chalcopyrite with minor sphalerite and hematite. Hydrothermal alteration consists of quartz, chlorite, carbonate, and sericite in the footwall pyroclastic rock, tuff, and lava breccia, which are also crosscut by late-stage carbonate and barite veins. The rhyolitic sill has been altered by silica and sericite and contains rare sulfides. Sulfur isotope values for sulfides range from + 0.7 to + 4.6‰ and suggest an essentially magmatic source for sulfur. Strontium isotopic compositions of hydrothermal carbonates and sulfates (0.70507–0.70660), sulfur isotopes of sulfates (+ 16.8 to + 17.3), and carbon and oxygen isotopic compositions of late-stage carbonates (δ18O VSMOW + 15.9 to + 17.6‰; δ13C VPDB − 1.8 to − 0.8‰) not only are permissive with seawater incursion in the ore-forming hydrothermal system but can also be attributed to fluid–rock interaction with hidden metamorphic basement rocks and Jurassic magmatic rocks. The lead isotopic composition of sulfides (206Pb/204Pb 18.505 to 18.586, 207Pb/204Pb 15.611 to 15.636, 208Pb/204Pb 38.516 to 38.640) implies leaching of the Middle Jurassic host rocks as the main source of Pb. LA-ICP-MS U–Pb zircon dating of the hanging wall rhyolitic sill affected by hydrothermal alteration yielded an age of 155.0 ± 1.0 Ma and provides a maximum age for mineralization. Ore formation at Shamlugh is younger than the immediate Middle Jurassic host rocks and is related to the Late Jurassic calc-alkaline and high-K calc-alkaline magmatic evolution. Late Jurassic magmatism includes a tonalite dated by LA-ICP-MS U–Pb zircon geochronology at 152.9 ± 0.7 Ma that hosts the 146-Ma-old Teghout porphyry deposit. In the absence of other age constraints, the genetic relationship of the polymetallic Shamlugh deposit with the Teghout porphyry deposit remains open to question. Nevertheless, hydrothermal minerals and alteration paragenesis and the lithologically and structurally controlled ore body geometry at Shamlugh are consistent with a low to intermediate sulfidation epithermal model.

Notes

Acknowledgements

The authors would like to thank the staff of Metal Prince Ltd. for access to the Shamlugh open pit. We are grateful to the expert technical help provided by J.-M. Boccard and F. Capponi, University of Geneva, during thin section and sample preparation and XRF analyses. J. Mederer, K. Kouzmanov, H. Rezeau, A. Suessenberger, A. Hoveyan, A. Vardanyan, S. Hovakimyan, I. Corral, and M. Hässig are thanked for assistance and discussions during this project. Reviews by Thomas Monecke, Fernando Tornos, Karen Kelley, Georges Beaudoin, and an anonymous reviewer have greatly contributed to the improvement of this article.

Funding information

The research was supported by the Swiss National Science Foundation through the research grants 200020-138130, 200020-155928, and 200020-168996 and the SCOPES Joint Research Projects IB7620-118901 and IZ73Z0-128324. Field work of M. Calder was supported by the Augustin Lombard Foundation of the Geneva SPHN Society and a Society of Economic Geology Graduate Student Fellowship grant.

Supplementary material

126_2018_851_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 24.5 kb)
126_2018_851_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 20.1 kb)
126_2018_851_MOESM3_ESM.docx (30 kb)
ESM 3 (DOCX 30.4 kb)
126_2018_851_MOESM4_ESM.docx (23 kb)
ESM 4 (DOCX 23.3 kb)

References

  1. Achikgiozyan SO, Zohrabyan SA, Karapetyan AI, Mirzoyan HG, Sargisyan RA, Zaryan RN (1987) The Kapan Mining District. Publishing House of the Academy of Sciences of the Armenian SSR, Yerevan 198 pp. (in Russian)Google Scholar
  2. Adamia SA, Zakariadze G, Chkhotua T, Sadradze N, Tsereteli N, Chabukiani A, Gventsdze A (2011) Geology of the Caucasus: a review. Turk J Earth Sci 20:489–544Google Scholar
  3. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148(5–6):692–725CrossRefGoogle Scholar
  4. Ali-Zadeh AA (2004) Some urgent tasks for the palaeontological and stratigraphical research studies in Azerbaijan. Azerbaijan National Academy of Sciences. Proceedings Sci Earth 3:3–5 (in Russian)Google Scholar
  5. Allen MB, Armstrong HA (2008) Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265(1–2):52–58CrossRefGoogle Scholar
  6. Althunyan AZ (1973) Geological structure and conditions of ore localization on Akhtala polymetallic deposit. Synopsys of thesis, Yerevan, ESU, 25 ppGoogle Scholar
  7. Amiryan S, Pidjyan GH, Faramazyan AS (1987) Mineralization stages and ore minerals of Teghut ore deposit. Izvestia AN Arm. SSR, Nauki o Zemle (Proceedings of the National Academy of Sciences, Armenian SSR, Earth Sciences) 40(4):31–44 (in Russian)Google Scholar
  8. Aslanyan AT, Gulyan EK, Pidjyan GO, Amiryan SO, Farazyan AS, Ovsepyan EH, Harutinyan SG, Galstyan KG (1980) Tekhut copper–molybdenum deposit. Izv. ASSR, Nauki o Zemle 33(5):3–24Google Scholar
  9. Babazadeh VM, Makhmudov AI, Ramazanov VG (1990) Porphyry-copper and molybdenum deposits. Azerbaijan Publication, Baku 377 pp (In Russian with German and English abstracts)Google Scholar
  10. Bagdasaryan GP (1972) Radiological and geochronological, and geological-petrographic studies applied in formational analysis. Izvestia AN Arm. SSR, Nauki o Zemle 5:23–42 (in Russian)Google Scholar
  11. Bagdasaryan GP, Gukasyan RK, Karamyan KA (1969) Absolute dating of Armenian ore formations. Int Geol Rev 11:1166–1172CrossRefGoogle Scholar
  12. Bagdasaryan GP, Melkonyan RL (1968) New data on the petrography and geochronology of some volcanogenic and subvolcanogenic formations in the Alaverdi region. Izvestia Nauki o Zemle (Proceedings of the National Academy of Sciences, Armenian SSR, Earth Sciences) 21(6):93–101 (in Russian)Google Scholar
  13. Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Friedrich A, Tabatabaei SH (2011) Arabia-Eurasia continental collision: insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. GSA Bull 123(1–2):106–131CrossRefGoogle Scholar
  14. Barrett TJ, MacLean WH (1994) Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstones and younger volcanic rocks. Geological Association of Canada Short Course Notes 11:433–467Google Scholar
  15. Barrett TJ, MacLean WH (1999) Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Rev Econ Geol 8:101–131Google Scholar
  16. Barrier E, Vrielynck B (2008) Paleotectonic map of the Middle East, Atlas of 14 maps, tectono sedimentary-palinspastic maps from Late Norian to Pliocene. Commission for the Geologic Map of the World (CCMW, CCGM), Paris, FranceGoogle Scholar
  17. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ (2011) Diapirs as the source of the sediment signature in arc lavas. Nat Geosci 4:641–646CrossRefGoogle Scholar
  18. Belov AA (1968) On the history of tectonic development of the northern margin of the Iranian Elibaykal subplatform on Lesser Caucasus. Izvestia of the Academy of Sciences of SSSR geology 10:121–129 (in Russian)Google Scholar
  19. Calder M (2014) Geological environment and genetic constraints of the Shamlugh ore deposit, Alaverdi district, Lesser Caucasus, Armenia. Unpublished MSc Thesis, University of Geneva, SwitzerlandGoogle Scholar
  20. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  21. Chacko T, Mayeda R, Clayton N, Goldsmith JR (1991) Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim Cosmochim Acta 55:2867–2882CrossRefGoogle Scholar
  22. Chiaradia M, Müntener O, Beate B (2011) Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western cordillera of Ecuador). J Petrol 52:1107–1141CrossRefGoogle Scholar
  23. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  24. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS International Chronostratigraphic Chart. Episodes 36:199–204Google Scholar
  25. Condie KC (1989) Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance. Lithos 23(1–2):1–18CrossRefGoogle Scholar
  26. Deines P (1980) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites, genesis and evolution. Unwin Hyman, London, pp 301–359Google Scholar
  27. Djrbashyan RT, Martirosyan YA, Tayan RN (1977) Evidence for sediments from the Danish stage in the southeastern part of the Giratagh fault. Proceedings of the National Academy of Sciences of the Republic of Armenia, Earth Sciences 30(6):10–30 (in Russian)Google Scholar
  28. Feldstein SN, Lange RA (1999) Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidences for melting of a subduction-modified mantle. J Petrol 40:1301–1320CrossRefGoogle Scholar
  29. Galoyan G, Rolland Y, Sosson M, Corsini M, Billo S, Verati C, Melkonyan R (2009) Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. J Asian Earth Sci 34:135–153CrossRefGoogle Scholar
  30. Galoyan G, Rolland Y, Sosson M, Corsini M, Melkonyan R (2007) Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia). Compt Rendus Geosci 339:482–492CrossRefGoogle Scholar
  31. Gamkrelidze IP, Shengelia DM (1999) The new data about geological structure of the Dzirulla crystalline massif and the conditions of formation of magmatites. Proceedings Geol Institute of the Georgian Acad of Science New Series 114:46–71Google Scholar
  32. Ghazaryan HA (1971) Main features of the magmatism of the Alaverdi ore district, in: Petrology of intrusive complexes of important ore districts of Armenian SSR. Publishing House of the Academy of Sciences of Armenian SSR, Yerevan, pp 7–116 (in Russian)Google Scholar
  33. Gugushvili V (2004) Two types of gold mineralization in the Bolnisi mining district related to Cretaceous volcanism. Proceedings Geol Institute of the Georgian Acad of Science 119:749–755Google Scholar
  34. Gugushvili VI, Bukia AS, Goderdzishvili NN, Javakhidze DG, Zakaraia DP, Muladze IU, Shavishvili ID, Shubitidze JS, Tchokhonelidze MJ (2014) In: Natsvlishvili MP (ed) Bolnisi ore district: geological development and structure, genesis of mineralization, economic potential and perspectives according to data for April 2014. Caucasus Mining Group, Tbilisi 55 p (in Russian with English abstract)Google Scholar
  35. Hakopian MS, Melkonian RL, Paronikian VH (1982) On the Teghut porphyry copper deposit origin. Izvestia AN Armenian SSR, Nauki o Zemle 6:38–43 (in Russian)Google Scholar
  36. Hässig M, Rolland Y, Sahakyan L, Sosson M, Galoyan G, Avagyan A, Bosch D, Müller C (2015) Multi-stage metamorphism in the South Armenian Block during the Late Jurassic to Early Cretaceous: tectonics over south-dipping subduction of Northern branch of Neotethys. J Asian Earth Sci 102:4–23CrossRefGoogle Scholar
  37. Hässig M, Rolland Y, Sosson M, Galoyan G, Müller C, Avagyan A, Sahakyan L (2013a) New structural and petrological data on the Amasia ophiolites (NW Sevan–Akera suture zone, Lesser Caucasus): insights for a large-scale obduction in Armenia and NE Turkey. Tectonophysics 588:135–153CrossRefGoogle Scholar
  38. Hässig M, Rolland Y, Sosson M, Galoyan G, Sahakyan L, Topuz G, Celik OF, Avagyan A, Müller C (2013b) Linking the NE Anatolian and Lesser Caucasus ophiolites: evidence for large-scale obduction of oceanic crust and implications for the formation of the Lesser Caucasus-Pontides Arc. Geodin Acta 26:311–330CrossRefGoogle Scholar
  39. Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48:2341–2357CrossRefGoogle Scholar
  40. Hedenquist JW, Arribas AR, Gonzales-Urien E (2000) Exploration for epithermal gold deposits. Rev Econ Geol 13:245–277Google Scholar
  41. Hermann J, Rubatto D (2009) Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol 265:512–526CrossRefGoogle Scholar
  42. Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin 286 pGoogle Scholar
  43. Hoffman A, Gruszyczynski M, Malkowski K (1991) On the interrelationship between temporal trends in δ13C, δ18O and δ34S in the World Ocean. J Geol 99:355–370CrossRefGoogle Scholar
  44. Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548CrossRefGoogle Scholar
  45. Jones CE, Jenkyns HC, Coe AL, Stephen HP (1994) Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochim Cosmochim Acta 58:3061–3074CrossRefGoogle Scholar
  46. Karamyan KA (1978) Geology, structure and condition of formation copper-molybdenum deposits of Zangezour ore region. Publishing House of the Academy of Sciences Armenian SSR, Yerevan, p 179 (in Russian)Google Scholar
  47. Karapetyan AI, Amiryan SH, Azizbekynam S, Altunyan AZ, Melkonyan RL, Guyumjyan HP, Paronikyan VH, Nalbandyan EM, Kaplanyan PM, Galstyan AR, Grigotyan LA, Zohrabyan SA (1982) Predicting metallogenic map of the Alaverdi-Shamlugh-Akhtala ore junction. Unpublished report of National Academy of Sciences of Armenian SSR, Institute of Geological SciencesGoogle Scholar
  48. Kazmin V, Sbortshikov I, Ricou LE, Zonenshain L, Boulin J, Knipper A (1986) Volcanic belts as markers of the Mesozoic-Cenozoic active margin of Eurasia. Tectonophysics 123:123–152CrossRefGoogle Scholar
  49. Kekelia S, Kekelia M, Otkhmezuri Z, Özgür N, Moon C (2004) Ore-forming systems in volcanogenic sedimentary sequences by the example of base metal deposits of the Caucasus and East Pontic Metallotect. Bull Mineral Res Explor 129:1–16Google Scholar
  50. Kelley S (2002) K-Ar and Ar-Ar dating. Rev Mineral Geochem 47:785–818CrossRefGoogle Scholar
  51. Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H (1997) Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim Cosmochim Acta 61:577–600CrossRefGoogle Scholar
  52. Khatchaturyan EA (1977) The mineralogy, geochemistry and genesis of ores of pyrite formation of Armenian SSR. Academy of Sciences of Armenian SSR, YerevanGoogle Scholar
  53. Kozerenko SV (2004) Hydrothermal system of the Zod gold sulfide deposit, Armenia: ore sources and formation conditions. Geochem Int 42:188–190Google Scholar
  54. Kozlovsky YA (1991) Mining encyclopedia, vol 5. Nedra Press, Moscow (in Russian)Google Scholar
  55. Lebedev AP, Malkhasyan EG (1965) Jurassic volcanism of Armenia. Publishing House Nauka, Moscow, p 167 (in Russian)Google Scholar
  56. Levitan G (2008) Gold deposits of the CIS. Xlibris Corporation, Bloomington, p 352Google Scholar
  57. McQuarrie N, van Hinsbergen DJ (2013) Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41(3):315–318CrossRefGoogle Scholar
  58. Mederer J (2013) Regional setting, geological context and genetic aspects of polymetallic hydrothermal ore deposits from the Kapan ore district, southern Armenia: a contribution to the Mesozoic island arc metallogeny of the Lesser Caucasus. Unpublished PhD thesis, Terre et Environnement 120, 161 ReproMail, GenèveGoogle Scholar
  59. Mederer J, Moritz R, Ulianov A, Chiaradia M (2013) Middle Jurassic to Cenozoic evolution of arc magmatism during Neotethys subduction and arc-continent collision in the Kapan Zone, southern Armenia. Lithos 177:61–78CrossRefGoogle Scholar
  60. Mederer J, Moritz R, Zohrabyan S, Vardanyan A, Melkonyan R, Ulianov A (2014) Base and precious metal mineralization in Middle Jurassic rocks of the Lesser Caucasus: a review of geology and metallogeny and new data from the Kapan, Alaverdi and Mehmana districts. Ore Geol Rev 58:185–207CrossRefGoogle Scholar
  61. Melkonyan RL (1976) Petrology, mineralogy and geochemistry of intrusive complexes of the Alaverdi ore field. In: Petrology and geochemistry of some intrusive complexes of the Armenian SSR. Publishing House of the Academy of Sciences of the Armenian SSR, Yerevan, pp 138–270 (in Russian)Google Scholar
  62. Melkonyan RL, Ghoukassyan RH (2004) On the problem of the age of the KSh intrusive complex. Izvestiya Akademii Nauk Armyanskoi SSR, Nauki O Zemle (Proceedings of the National Academy of Sciences, Armenian SSR, Earth Sciences) 1:29–35 (in Russian)Google Scholar
  63. Melkonyan RL, Moritz R, Tayan RN, Selby D, Ghoukassyan RK, Hovakimyan SE (2014) Main copper-porphyry systems of Lesser Caucasus. Izvestia NAN RA, Nauki o Zemle 67(1):3–29 (in Russian)Google Scholar
  64. Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37:215–224CrossRefGoogle Scholar
  65. Migineishvili R (2005) Hybrid nature of the Madneuli Cu-Au deposit, Georgia. Geochemistry, Mineralogy and Petrology (J Bulg Acad Sci) 43:128–132Google Scholar
  66. Moon CJ, Gotsiridze G, Gugushvili V, Kekelia M, Kekelia S, Migineishvili R, Otkhmezuri Z, Özgür N (2001) Comparison of mineral deposits between Georgian and Turkish sectors of the Tethyan metallogenic belt. In Mineral deposits at the beginning of the 21st Century, Proceedings 6th Biennial SGA Meeting, Krakow, Poland 309–312Google Scholar
  67. Moritz R, Melkonyan R, Selby D, Popkhadze N, Gugushvili V, Tayan R, Ramazanov V (2016a) Metallogeny of the Lesser Caucasus: from arc construction to post-collision evolution. In: Richards J (ed) Tethyan tectonics and metallogeny, Special Publication of the Society of Economic Geology 19:157–192Google Scholar
  68. Moritz R, Rezeau H, Ovtcharova M, Tayan R, Melkonyan R, Hovakimyan S, Ramazanov V, Selby D, Ulianov A, Chiaradia M, Putlitz B (2016b) Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Res 37:465–503CrossRefGoogle Scholar
  69. Nalbandyan EM (1968) Characteristics of hydrothermal metamorphism related to the polyphase development of Middle Jurassic volcanism in the Alaverdi ore region. Izvestia of National Academy of Sciences of Armenia, Nauki o Zemle 21(6):16–22 (in Russian)Google Scholar
  70. Nalbandyan EM, Paronikyan VH (1966) About ore-bearing rocks of the Alaverdi deposit. Izvestia of National Academy of Sciences of Armenia, Nauki o Zemle 19(6):90–94 (in Russian)Google Scholar
  71. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567Google Scholar
  72. Paronikyan VH (1962) On the mineralogy of ore of Akhtala polymetalic deposit. Izvestia of Sciences of Armenian SSR, Geol. and Geograph Sci 15(6):3–12 (in Russian)Google Scholar
  73. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ, Basalts C, Xenoliths M (eds) . Shiva, Nantwich, pp 230–249Google Scholar
  74. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed), Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short course notes 12:79–113Google Scholar
  75. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944CrossRefGoogle Scholar
  76. Popkhadze N, Moritz R, Gugushvili V (2014) Architecture of Upper Cretaceous rhyodacitic hyaloclastite at the polymetallic Madneuli deposit, Lesser Caucasus, Georgia. Central European Journal of Geoscience 6:308–329Google Scholar
  77. Rezeau H, Moritz R, Wotzlaw J-F, Tayan R, Melkonyan R, Ulianov A, Selby D, d’Abzaz F-X, Stern R (2016) Temporal and genetic link between incremental pluton assembly and pulsed porphyry Cu-Mo formation in accretionary orogens. Geology 44:627–630CrossRefGoogle Scholar
  78. Rezeau H, Moritz R, Leuthold J, Hovakimyan S, Tayan R, Chiaradia M (2017) 30 Myr of Cenozoic magmatism along the Tethyan margin during Arabia–Eurasia accretionary orogenesis (Meghri–Ordubad pluton, southernmost Lesser Caucasus). Lithos 288-289:108–124CrossRefGoogle Scholar
  79. Rezeau H, Leuthold J, Tayan R, Hovakimyan S, Ulianov A, Kouzmanov K, Moritz R (2018) Petrological characterization of subduction- and collision-related magmatism in the composite Meghri-Ordubad pluton, southernmost Lesser Caucasus (Tethyan orogenic belt). J Petrol 59:931–966CrossRefGoogle Scholar
  80. Robertson AH, Parlak O, Ünlügenç UC (2013) Geological development of Anatolia and the easternmost Mediterranean region. Geological Society of London, LondonGoogle Scholar
  81. Rolland Y, Billo S, Corsini M, Sosson M, Galoyan G (2009a) Blueschists of the Amassia-Stepanavan suture zone (Armenia): linking Tethys subduction history from E-Turkey to W-Iran. Int J Earth Sci 98:533–550CrossRefGoogle Scholar
  82. Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C (2009b) Jurassic back-arc and cretaceous hot-spot series in the Armenian ophiolites—implications for the obduction process. Lithos 112:163–187CrossRefGoogle Scholar
  83. Rolland Y, Galoyan G, Sosson M, Melkonyan R, Avagyan A (2010) The Armenian Ophiolite: insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism and Upper Cretaceous obduction over the South Armenian Block. Geol Soc Lond, Spec Publ 340(1):353–382CrossRefGoogle Scholar
  84. Rolland Y, Sosson M, Adamia S, Sadradze N (2011) Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating. Gondwana Res 20:798–815CrossRefGoogle Scholar
  85. Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group Limited, EssexGoogle Scholar
  86. Rostovtsev KO, Agajev VB, Azarjan NR, Babajev RG, Beznosov NV, Gasanov NA, Zasaschvili VI, Lomize MG, Paitchadze TA, Panov DI, Prosorovskaya EL, Sakharov AS, Todria VA, Toptchischvili MV, Abdulkasunzade MR, Avanesjan AS, Belenkova VS, Bendukidze NS, Vuks VJ, Doludenko MP, Kiritchkova AI, Klikuschin VG, Krymholz GJ, Romanov GM, Schevtchenko TV (1992) Jura Kavkaza. Nauka, Sankt-Peterburg (in Russian)Google Scholar
  87. Ruban DA (2007) Jurassic transgressions and regressions in the Caucasus (northern Neotethys Ocean) and their influences on the marine biodiversity. Palaeogeogr Palaeoclimatol Palaeoecol 251:422–436CrossRefGoogle Scholar
  88. Rye RO (2005) A review of the stable-isotope geochemistry of sulphate minerals in selected igneous environments and related hydrothermal systems. Chem Geol 215:5–36CrossRefGoogle Scholar
  89. Seal RR II (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 61:633–678CrossRefGoogle Scholar
  90. Sevunts AG (1972) About regularities of sulfur isotopes distribution in the ores of Alaverdi group of deposits. Izvestia Nauki O Zemle (Proceedings of the National Academy of Sciences, Armenian SSR, Earth Sciences) 25(2):29–36 (in Russian)Google Scholar
  91. Shengelia DM, Tsutsunava TN, Shubitidze LG (2006) New data on structure, composition, and regional metamorphism of the Tsakhkunyats and Akhum-Asrikchai massifs, the Lesser Caucasus. Dokl Earth Sci 409A:900–904CrossRefGoogle Scholar
  92. Sillitoe RH (1993) Epithermal models: genetic types, geometrical controls and shallow features. Geol Assoc Can Spec Pap 40:403–417Google Scholar
  93. Sillitoe RH (1999) Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments Pacrim ‘99 Congress, Bali, Indonesia, 1999, Proceedings: Melbourne, Australasian Institute of Mining and Metallurgy 29–44Google Scholar
  94. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41CrossRefGoogle Scholar
  95. Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th anniversary vol 485-522Google Scholar
  96. Sopko PF (1961) Geology of pyrite deposits in the Alaverdi Ore District. Publishing House of the Academy of Sciences of the Armenian SSR, Yerevan, p 170 (in Russian)Google Scholar
  97. Sosson M, Rolland Y, Müller C, Danelian T, Melkonyan R, Kekelia S, Adamia S, Babazadeh V, Kangarli T, Avagyan A, Galoyan G, Mosar J (2010) Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geol Soc Lond, Spec Publ 340:329–352CrossRefGoogle Scholar
  98. Stampfli GM, Borel GD (2004) The TRANSMED transects in space and time: constraints on the Paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler P (eds) The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle. Springer Verlag, Berlin, pp 53–80 CD ROMCrossRefGoogle Scholar
  99. Stampfli GM, Hochard C (2009) Plate tectonics of the Alpine realm. Geol Soc Lond Spec Publ 327:89–111CrossRefGoogle Scholar
  100. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345CrossRefGoogle Scholar
  101. Vincent SJ, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA, Simmons MD (2005) Insights from the Talysh of Ajerbaijan into the Paleogene evolution of the South Caspian region. Geol Soc Am Bull 117:1513–1533CrossRefGoogle Scholar
  102. Wang G, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CH, Bai ZH (2006) Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos 89:424–446CrossRefGoogle Scholar
  103. Wang H, Wu YB, Li CR, Zhao TY, Qin ZW, Zhu LQ, Gao S, Zheng JP, Liu XM, Zhou L, Zhang Y, Yang SH (2014) Recycling of sediment into the mantle source of K-rich mafic rocks: Sr-Nd-Hf-O isotopic evidence from the Fushui complex in the Qinling orogen. Contrib Mineral Petrol 168:1062CrossRefGoogle Scholar
  104. Winchester J, Floyd P (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  105. Zakariadze GS, Dilek Y, Adamia SA, Oberhänsli RE, Karpenko SF, Bazylev BA, Solov’eva N (2007) Geochemistry and geochronology of the Neoproterozoic Pan-African Transcaucasian Massif (Republic of Georgia) and implications for island arc evolution of the late Precambrian Arabian-Nubian shield. Gondwana Res 11:92–108CrossRefGoogle Scholar
  106. Zartman R, Doe B (1981) Plumbotectonics—the model. Tectonophysics 75:135–162CrossRefGoogle Scholar
  107. Zheng Y (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126CrossRefGoogle Scholar
  108. Zohrabyan SA, Melkonyan RL (1999) Role of structural factors on the location of mineralization in iron-pyrite deposits of the Alaverdi-Kapan zone. Izvestia NAS of RA 52(2–3):31–40 (in Russian)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Institute of Earth SciencesUniversity of LausanneLausanneSwitzerland
  3. 3.Institute of Earth Surface DynamicUniversity of LausanneLausanneSwitzerland
  4. 4.Institute of Geological SciencesNational Academy of the Republic of ArmeniaYerevanArmenia

Personalised recommendations