Advertisement

Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry

  • Matthias E. Bauer
  • Mathias Burisch
  • Jörg Ostendorf
  • Joachim Krause
  • Max Frenzel
  • Thomas Seifert
  • Jens Gutzmer
Article
  • 459 Downloads

Abstract

The historic silver mining district of Freiberg (Germany) comprises hydrothermal vein-style mineralization of Permian and Cretaceous age. We compare sphalerite compositions with associated ore-forming fluids and constrain the behavior of critical metals such as In, Ge, and Ga in contrasting hydrothermal environments. Fluid inclusion studies reveal that the Permian veins formed due to boiling and cooling of a low-salinity (0 to 6% eq. w[NaCl]) magmatic-hydrothermal fluid at 350 to 230 °C. In contrast, Cretaceous veins formed by mixing of highly saline (17 to 24% eq. w[NaCl + CaCl2] and variable Na/(Na + Ca) ratios) brines at low temperatures (~ 120 °C). Sulfides of the Permian ore stage have a narrow range of δ34SVCDT from − 2.3 to + 0.9‰, while the sulfides of the Cretaceous stage have a large scatter and significantly more negative δ34SVCDT values (− 30.9 to − 5.5‰), supporting the different nature of the hydrothermal systems. Contrasting fluid systems and ore-forming mechanisms correspond to markedly different trace element systematics in sphalerite. Permian sphalerite is significantly enriched in In (up to 2500 μg/g In) relative to two sphalerite generations of Cretaceous veins. The latter have higher Ge (up to 2700 μg/g Ge) and Ga (up to 1000 μg/g Ga) concentrations. The observed trace element systematics of different sphalerite generations imply that In is enriched in high-temperature, low- to intermediate-salinity fluids with a significant magmatic-hydrothermal fluid component, while Ge and Ga are more concentrated in low-temperature, high-salinity crustal fluids with no obvious magmatic-hydrothermal affiliation.

Keywords

Sphalerite Indium Germanium Gallium Critical metals EPMA LA-ICP-MS Fluid inclusions Near-infrared light microthermometry Sulfur isotopes Geothermometer Erzgebirge 

Notes

Acknowledgments

Andreas Massanek and Christin Kehrer (Geoscientific and Ore Deposit Collection, TU Bergakademie Freiberg) are thanked for providing ore samples. Helene Brätz (GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg) helped during the LA-ICP-MS analyses; we gratefully acknowledge her assistance and guidance. Many thanks to Harald Strauß (Westfälische Wilhelms-Universität Münster) for sulfur isotope analyses. Anne Jantschke (TU Dresden) is thanked for Raman laser analyses. Andreas Bartzsch, Roland Würkert and Michael Stoll (HIF), and Michael Magnus (TUBAF) are thanked for sample preparation. The geographic map of Germany is based on data generated with generic mapping tools, GMT 5 (https://www.soest.hawaii.edu/gmt/). We would like to thank Marie-Christine Boiron, Thomas Monecke, and associate editor H. Albert Gilg for their constructive comments and Bernd Lehmann for handling our manuscript.

Funding information

We are greatly indebted to the Dr. Erich-Krüger-Foundation for funding the new instrumental setup in the Fluid Inclusion Laboratory of the Economic Geology and Petrology Research Group in Freiberg. The first author is funded by the Biohydrometallurgical Center for Strategic Elements (BHMZ) of the Dr. Erich-Krüger-Foundation, TU Bergakademie Freiberg.

Supplementary material

126_2018_850_MOESM1_ESM.xlsx (481 kb)
ESM 1 (XLSX 480 kb)

References

  1. Ackerman L, Haluzová E, Creaser RA, Pašava J, Veselovský F, Breiter K, Erban V, Drábek M (2017) Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Mineral Deposita 52:651–662.  https://doi.org/10.1007/s00126-016-0685-5 CrossRefGoogle Scholar
  2. Ashworth C, Frisch G (2017) Complexation equilibria of indium in aqueous chloride, sulfate and nitrate solutions: an electrochemical investigation. J Solut Chem 46:1928–1940.  https://doi.org/10.1007/s10953-017-0675-y CrossRefGoogle Scholar
  3. Bachmann K, Frenzel M, Krause J, Gutzmer J (2017) Advanced identification and quantification of In-bearing minerals by scanning electron microscope-based image analysis. Microsc Microanal 23:1–11.  https://doi.org/10.1017/S1431927617000460 CrossRefGoogle Scholar
  4. Balabin AI, Urusov VS (1995) Recalibration of the sphalerite cosmobarometer: experimental and theoretical treatment. Geochim Cosmochim Acta 59:1401–1410.  https://doi.org/10.1016/0016-7037(95)00052-2 CrossRefGoogle Scholar
  5. Barton PB, Toulmin P (1966) Phase relations involving sphalerite in the Fe-Zn-S system. Econ Geol 61:815–849.  https://doi.org/10.2113/gsecongeo.61.5.815 CrossRefGoogle Scholar
  6. Bauer ME, Seifert T, Burisch M, Krause J, Richter N, Gutzmer J (2017) Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite. Mineral Deposita.  https://doi.org/10.1007/s00126-017-0773-1
  7. Baumann L (1958) Tektonik und Genesis der Erzlagerstätte von Freiberg (Zentralteil). Freiberger Forschungshefte C 46:1–208Google Scholar
  8. Baumann L (1960) Gangarchiv des Freiberger Lagerstättenbezirks (Zentralteil). Freiberger Forschungshefte C 79:202–214Google Scholar
  9. Baumann L (1994) The vein deposit of Freiberg, Saxony. In: Gehlen K, Klemm DD (eds) Mineral deposits of the Erzgebirge/Krusné hory (Germany/Czech Republik). Schweizerbart Science Publishers, StuttgartGoogle Scholar
  10. Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke im Georg Thieme Verlag, StuttgartGoogle Scholar
  11. Belissont R, Boiron M, Luais B, Cathelineau M (2014) LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac – Saint-Salvy deposit (France): insights into incorporation mechanisms and ore deposition processes. Geochim Cosmochim Acta 126:518–540.  https://doi.org/10.1016/j.gca.2013.10.052 CrossRefGoogle Scholar
  12. Belissont R, Muñoz M, Boiron M, Luais B, Mathon O (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochim Cosmochim Acta 177:298–314.  https://doi.org/10.1016/j.gca.2016.01.001 CrossRefGoogle Scholar
  13. Bernstein LR (1985) Germanium geochemistry and mineralogy. Geochim Cosmochim Acta 49:2409–2422.  https://doi.org/10.1016/0016-7037(85)90241-8 CrossRefGoogle Scholar
  14. Boiron M, Cathelineau M, Richard A (2010) Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids 10:270–292.  https://doi.org/10.1111/j.1468-8123.2010.00289.x CrossRefGoogle Scholar
  15. Bons PD, van Milligen BP (2001) New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. Geology 29:919–922CrossRefGoogle Scholar
  16. Bons PD, Fusswinkel T, Gomez-Rivas E, Markl G, Wagner T, Walter B (2014) Fluid mixing from below in unconformity-related hydrothermal ore deposits. Geology 42:1035–1038CrossRefGoogle Scholar
  17. Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151:105–121.  https://doi.org/10.1016/j.lithos.2011.09.022 CrossRefGoogle Scholar
  18. Breithaupt JFA (1849) Die Paragenesis der Mineralien: Mineralogisch, geognostisch und chemisch beleuchtet: mit besonderer Rücksicht auf Bergbau. Engelhardt, FreibergGoogle Scholar
  19. Burisch M, Walter BF, Wälle M, Markl G (2016) Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: insights from trace element systematics of individual fluid inclusions. Chem Geol 429:44–50.  https://doi.org/10.1016/j.chemgeo.2016.03.004 CrossRefGoogle Scholar
  20. Burisch M, Walter BF, Markl G (2017) Silicification of hydrothermal gangue minerals in Pb-Zn-Cu-fluorite-quartz-baryte veins. Can Mineral 55:501–514.  https://doi.org/10.3749/canmin.1700005 CrossRefGoogle Scholar
  21. Burisch M, Hartmann A, Bach W, Krolop P, Krause J, Gutzmer J (2018a) Genesis of hydrothermal silver-antimony-sulfide veins of the Bräunsdorf sector as part of the classic Freiberg silver mining district, Germany. Mineral Deposita.  https://doi.org/10.1007/s00126-018-0842-0
  22. Burisch M, Walter BF, Gerdes A, Lanz M, Markl G (2018b) Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany. Geochim Cosmochim Acta 223:259–278.  https://doi.org/10.1016/j.gca.2017.12.002 CrossRefGoogle Scholar
  23. Burke EAJ, Kieft C (1980) Roquesite and Cu-In-bearing sphalerite from Långban, Bergslagen, Sweden. Can Mineral 18:361–363Google Scholar
  24. Catchpole H, Kouzmanov K, Fontboté L, Guillong M, Heinrich CA (2011) Fluid evolution in zoned Cordilleran polymetallic veins—insights from microthermometry and LA-ICP-MS of fluid inclusions. Chem Geol 281:293–304.  https://doi.org/10.1016/j.chemgeo.2010.12.016 CrossRefGoogle Scholar
  25. Černý P, Harris DC (1978) The Tanco pegmatite at Bernic Lake, Manitoba; XI, native elements, alloys, sulfides and sulfosalts. Can Mineral 16:625Google Scholar
  26. Charpentier JFW (1778) Mineralogische Geographie der Chursächsischen Lande: mit Kupfern. Crusius, LeipzigGoogle Scholar
  27. Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky LV, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73:4761–4791.  https://doi.org/10.1016/j.gca.2009.05.045 CrossRefGoogle Scholar
  28. Cook NJ, Ciobanu CL, Williams T (2011) The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy 108:226–228.  https://doi.org/10.1016/j.hydromet.2011.04.003 CrossRefGoogle Scholar
  29. Cook NJ, Ciobanu CL, Brugger J, Etschmann B, Howard DL, de Jonge MD, Ryan C, Paterson D (2012) Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am Mineral 97:476–479.  https://doi.org/10.2138/am.2012.4042 CrossRefGoogle Scholar
  30. Di Benedetto F, Bernardini GP, Costagliola P, Plant D, Vaughan DJ (2005) Compositional zoning in sphalerite crystals. Am Mineral 90:1384–1392.  https://doi.org/10.2138/am.2005.1754 CrossRefGoogle Scholar
  31. Diamond LW (1990) Fluid inclusion evidence for PVTX evolution of hydrothermal solutions in late-Alpine gold-quartz veins at Brusson, Val d’Ayas, northwest Italian Alps. Am J Sci 290:912–958CrossRefGoogle Scholar
  32. Diamond LW (2001) Review of the systematics of CO2–H2O fluid inclusions. Lithos 55:69–99.  https://doi.org/10.1016/S0024-4937(00)00039-6 CrossRefGoogle Scholar
  33. Diamond LW (2003) Systematics of H2O inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation, vol 32. Mineralogical Association of Canada, Short Course, pp 55–78Google Scholar
  34. Dong G, Morrison G, Jaireth S (1995) Quartz textures in epithermal veins, Queensland; classification, origin and implication. Econ Geol 90:1841–1856.  https://doi.org/10.2113/gsecongeo.90.6.1841 CrossRefGoogle Scholar
  35. Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000°C, 0 to 5000bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901.  https://doi.org/10.1016/j.gca.2006.01.033 CrossRefGoogle Scholar
  36. EU Commission (2014) Critical raw materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials, BrusselsGoogle Scholar
  37. Evans BW, Guggenheim SJ (1988) Talc, pyrophyllite, and related minerals. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas), pp 225–294CrossRefGoogle Scholar
  38. Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84:310–320CrossRefGoogle Scholar
  39. Feist-Burkhardt S, Götz AE, Szulc J, Borkhataria R, Geluk M, Haas J, Hornung J, Jordan P, Kempf O, Michalí-k J, Nawrocki J, Reinhardt L, Ricken W, Röhling H, Rüffer T, Török Á, Zühlke R (2008) Triassic. In: McCann T (ed) The geology of Central Europe, vol 2. Geological Society of London, pp 749–821Google Scholar
  40. Förster H, Rhede D (2006) The Be-Ta-rich granite of Seiffen (eastern Erzgebirge, Germany): accessory-mineral chemistry, composition, and age of Variscan Li-F granites of A-type affinity. Neues Jahrb Mineral Abh 182:307–321Google Scholar
  41. Förster H, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia – from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 287–308Google Scholar
  42. Förster H, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645.  https://doi.org/10.1093/petroj/40.11.1613 CrossRefGoogle Scholar
  43. Förster H, Gottesmann B, Tischendorf G, Siebel W, Rhede D, Seltmann R, Wasternack J (2007) Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: a record of source heterogeneity of post-collisional felsic magmatism. Neues Jahrb Mineral Abh 183:123–147.  https://doi.org/10.1127/0077-7757/2007/0064 CrossRefGoogle Scholar
  44. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond, Spec Publ 179:35–61.  https://doi.org/10.1144/GSL.SP.2000.179.01.05 CrossRefGoogle Scholar
  45. Frenzel M, Ketris MP, Gutzmer J (2014) On the geological availability of germanium. Mineral Deposita 49:471–486.  https://doi.org/10.1007/s00126-013-0506-z CrossRefGoogle Scholar
  46. Frenzel M, Hirsch T, Gutzmer J (2016a) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol Rev 76:52–78.  https://doi.org/10.1016/j.oregeorev.2015.12.017 CrossRefGoogle Scholar
  47. Frenzel M, Ketris MP, Seifert T, Gutzmer J (2016b) On the current and future availability of gallium. Resour Policy 47:38–50.  https://doi.org/10.1016/j.resourpol.2015.11.005 CrossRefGoogle Scholar
  48. Fusswinkel T, Wagner T, Wälle M, Wenzel T, Heinrich CA, Markl G (2013) Fluid mixing forms basement-hosted Pb-Zn deposits: insight from metal and halogen geochemistry of individual fluid inclusions. Geology 41:679–682CrossRefGoogle Scholar
  49. Gehrig M (1980) Phasengleichgewichte und pVT-Daten ternärer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550 °C. PhD thesis, Universität KarlsruheGoogle Scholar
  50. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals: SEPM short course notes, 31Google Scholar
  51. Götze J, Pan Y, Stevens-Kalceff M, Kempe U, Müller A (2015) Origin and significance of the yellow cathodoluminescence (CL) of quartz. Am Mineral 100:1469–1482.  https://doi.org/10.2138/am-2015-5072 CrossRefGoogle Scholar
  52. Haubrich F, Tichomirowa M (2002) Sulfur and oxygen isotope geochemistry of acid mine drainage—the polymetallic sulfide deposit “Himmelfahrt Fundgrube” in Freiberg (Germany). Isot Environ Health Stud 38:121–138.  https://doi.org/10.1080/10256010208033319 CrossRefGoogle Scholar
  53. Hedenquist JW, Henley RW (1985a) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80:1640–1668.  https://doi.org/10.2113/gsecongeo.80.6.1640 CrossRefGoogle Scholar
  54. Hedenquist JW, Henley RW (1985b) The importance of CO2 on freezing point measurements of fluid inclusions; evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406CrossRefGoogle Scholar
  55. Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99.  https://doi.org/10.1007/s00531-012-0791-2 CrossRefGoogle Scholar
  56. Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium—a review. Ore Geol Rev 30:145–180.  https://doi.org/10.1016/j.oregeorev.2005.07.034 CrossRefGoogle Scholar
  57. Janetschke N, Wilmsen M (2014) Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Cenomanian-Turonian of Saxony, Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (ZDGG) 165:179–207.  https://doi.org/10.1127/1860-1804/2013/0036 CrossRefGoogle Scholar
  58. Jenner FE (2017) Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nat Geosci 10:524–529CrossRefGoogle Scholar
  59. Johan Z (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Miner Petrol 39:211–229.  https://doi.org/10.1007/BF01163036 CrossRefGoogle Scholar
  60. Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286.  https://doi.org/10.1016/j.chemgeo.2003.11.013 CrossRefGoogle Scholar
  61. Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Mineral Deposita 39:646–669.  https://doi.org/10.1007/s00126-004-0435-y CrossRefGoogle Scholar
  62. Kieft K, Damman AH (1990) Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, west Bergslagen, Central Sweden. Mineral Mag 54:109–112CrossRefGoogle Scholar
  63. Klemm W (1994) Chemical evolution of hydrothermal solutions during Variscan and post-Variscan mineralization in the Erzgebirge, Germany. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collisional orogens: focussed on the Erzgebirge and comparable metallogenic settings. Czech Geological Survey, Prague, pp 150–158Google Scholar
  64. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamtes 1:1–39Google Scholar
  65. Kroner U, Görz I (2010) Variscan assembling of the allochthonous domain of the Saxo-Thuringian zone—a tectonic model. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 271–286Google Scholar
  66. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329.  https://doi.org/10.1016/j.gr.2013.03.001 CrossRefGoogle Scholar
  67. Kröner A, Willner PA (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1–20.  https://doi.org/10.1007/s004100050401 CrossRefGoogle Scholar
  68. Kröner A, Willner AP, Hegner E, Frischbutter A, Hofmann J, Bergner R (1995) Latest precambrian (Cadomian) zircon ages, Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol Rundsch 84:437–456.  https://doi.org/10.1007/BF00284512 CrossRefGoogle Scholar
  69. Kroner U, Romer RL, Linnemann U (2010) The Saxo-Thuringian zone of the Variscan Orogen as part of Pangea. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 3–16Google Scholar
  70. Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191.  https://doi.org/10.1007/s00269-003-0306-6 CrossRefGoogle Scholar
  71. Longerich HP, Jackson SE, Gunther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904.  https://doi.org/10.1039/JA9961100899 CrossRefGoogle Scholar
  72. Lüders V (2017) Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives. Mineral Deposita 52:663–673.  https://doi.org/10.1007/s00126-016-0694-4 CrossRefGoogle Scholar
  73. Luthardt L, Rößler R (2017) Fossil forest reveals sunspot activity in the early Permian. Geology 45:279–282.  https://doi.org/10.1130/G38669.1 CrossRefGoogle Scholar
  74. Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U–Pb zircon age and a volcanogenic model for the early Permian Chemnitz fossil forest. Int J Earth Sci 107:2465–2489.  https://doi.org/10.1007/s00531-018-1608-8 CrossRefGoogle Scholar
  75. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in western Europe. Tectonophysics 196:309–337.  https://doi.org/10.1016/0040-1951(91)90328-P CrossRefGoogle Scholar
  76. Mitchell J, Halliday AN (1976) Extent of Triassic-Jurassic hydrothermal ore deposits on the North Atlantic margins. Trans Inst Min Metall B85:159–161Google Scholar
  77. Möller P, Dulski P (1993) Germanium and gallium distribution in sphalerite. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits: a case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Gebrüder Borntraeger, BerlinGoogle Scholar
  78. Moncada D, Baker D, Bodnar RJ (2017) Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geol Rev 89:143–170.  https://doi.org/10.1016/j.oregeorev.2017.05.024 CrossRefGoogle Scholar
  79. Monecke T, Petersen S, Hannington MD (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings. Econ Geol 109:2079–2101.  https://doi.org/10.2113/econgeo.109.8.2079 CrossRefGoogle Scholar
  80. Moritz R (2006) Fluid salinities obtained by infrared microthermometry of opaque minerals: implications for ore deposit modeling—a note of caution. J Geochem Explor 89:284–287.  https://doi.org/10.1016/j.gexplo.2005.11.068 CrossRefGoogle Scholar
  81. Müller CH (1850) Die Erzlagerstätten nördlich und nordwestlich von Freiberg. In: von Cotta B (ed) Gangstudien oder Beiträge zur Kenntniss der Erzgänge. Mit zehn Tafeln Abbildungen und einem Holzschnitt, vol 1. J. G. Engelhardt, Freiberg, pp 101–304Google Scholar
  82. Müller CH (1901) Die Erzgänge des Freiberger Bergrevieres. In: Credner H (ed) Erläuterungen zur geologischen Specialkarte des Königreiches Sachsen. Verlag W. Engelmann, Leipzig, pp 1–350Google Scholar
  83. Murakami H, Ishihara S (2013) Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243.  https://doi.org/10.1016/j.oregeorev.2013.01.010 CrossRefGoogle Scholar
  84. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222.  https://doi.org/10.1016/j.gr.2009.08.001 CrossRefGoogle Scholar
  85. Nasdala L, Götze J, Pidgeon TR, Kempe U, Seifert T (1998) Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132:300–306.  https://doi.org/10.1007/s004100050423 CrossRefGoogle Scholar
  86. Oftedal IW (1941) Untersuchungen über die Nebenbestandteile von Erzmineralien norwegischer zinkblende-führender Vorkommen, vol 8. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, Mat.-naturv.Kl.no.8Google Scholar
  87. Ohta E (1989) Occurrence and chemistry of indium-containing minerals from the Toyoha mine, Hokkaido, Japan. Mining Geol 39:355–372Google Scholar
  88. Osbahr I, Krause J, Bachmann K, Gutzmer J (2015) Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations. Microsc Microanal 21:1080–1095.  https://doi.org/10.1017/S1431927615000719 CrossRefGoogle Scholar
  89. Ostendorf J, Henjes-Kunst F, Seifert T, Gutzmer J (2018) Age and genesis of polymetallic veins in the Freiberg district, Erzgebirge, Germany: constraints from radiogenic isotopes. Mineral Deposita.  https://doi.org/10.1007/s00126-018-0841-1
  90. Pattrick RAD, Dorling M, Polya DA (1993) TEM study of indium- and copper-bearing growth-banded sphalerite. Can Mineral 31:105–117Google Scholar
  91. Pattrick RAD, Mosselmans JFW, Charnock JM (1998) An X-ray absorption study of doped sphalerites. Eur J Mineral 10:239–250CrossRefGoogle Scholar
  92. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144.  https://doi.org/10.1111/j.1751-908X.1997.tb00538.x CrossRefGoogle Scholar
  93. Pilot J, Legierski J, Rösler HJ (1970) Pb- und S-Isotopen-Untersuchungen an Freiberger und anderen Erzlagerstätten. Geologie 19:41–55Google Scholar
  94. Reich F, Richter T (1863a) Ueber das Indium. J Prakt Chem 90:172–176.  https://doi.org/10.1002/prac.18630900122 CrossRefGoogle Scholar
  95. Reich F, Richter T (1863b) Vorläufige Notiz über ein neues Metall. J Prakt Chem 89:441–442.  https://doi.org/10.1002/prac.18630890156 CrossRefGoogle Scholar
  96. Reich F, Richter T (1864) Ueber das Indium (Fortsetzung). J Prakt Chem 92:480–485.  https://doi.org/10.1002/prac.18640920180 CrossRefGoogle Scholar
  97. Repstock A, Breitkreuz C, Lapp M, Schulz B (2017) Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization. Int J Earth Sci 107:1485–1513.  https://doi.org/10.1007/s00531-017-1554-x CrossRefGoogle Scholar
  98. Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Mineral Deposita 42:337–359.  https://doi.org/10.1007/s00126-006-0114-2 CrossRefGoogle Scholar
  99. Rösler HJ, Kühne R (1970) Regularities in the hydrothermal change of wall-rocks of some Erzgebirge deposits and their genetic significance. In: Pouba Z, Štemprok M (eds) Problems of hydrothermal ore deposition: the origin, evolution and control of ore-forming fluids. Symposium organized by the International Association on the Genesis of Ore Deposits. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, pp 304–311Google Scholar
  100. Rösler HJ, Pilot J, Gebhardt R (1966) Schwefel-Isotopenuntersuchungen an Magmatiten und postmagmatischen Lagerstätten des Erzgebirges und Thüringens. Bergakademie 18:266–272Google Scholar
  101. Ross CS, Kerr PF (1930) Dickite, a kaolin mineral. Am Mineral 15:34–39Google Scholar
  102. Rosso KM, Bodnar RJ (1995) Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochim Cosmochim Acta 59:3961–3975.  https://doi.org/10.1016/0016-7037(95)94441-H CrossRefGoogle Scholar
  103. Sander MV, Black JE (1988) Crystallization and recrystallization of growth-zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies. Econ Geol 83:1052–1060.  https://doi.org/10.2113/gsecongeo.83.5.1052 CrossRefGoogle Scholar
  104. Schneider JW, Romer RL (2010) The Late Variscan molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 323–346Google Scholar
  105. Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Deutsche Stratigraphische Kommission (ed) Stratigraphie von Deutschland X: Teil I: Innervariscische Becken. Schriftenr. Dt. Ges. Geowiss., Heft 61, Hannover, pp 530–588Google Scholar
  106. Schorr S, Wagner G (2005) Structure and phase relations of the Zn2x(CuIn)1−xS2 solid solution series. J Alloys Compd 396:202–207.  https://doi.org/10.1016/j.jallcom.2004.12.018 CrossRefGoogle Scholar
  107. Schrage I (1962) Schwefelisotopenuntersuchungen an einigen Lagerstättenbezirken: unter besonderer Berücksichtigung der kiesig-blendigen Bleierzformation der Erzlagerstätte von Freiberg. Freiberger Forschungshefte C 143:1–107Google Scholar
  108. Schroll E (1954) Ein Beitrag zur geochemischen Analyse ostalpiner Blei-Zink-Erze. Mitt Österr Miner Ges Sonderbd 3:1–85Google Scholar
  109. Schroll E (1955) Über das Vorkommen einiger Spurenmetalle in Blei-Zink-Erzen der ostalpinen Metallprovinz. Tscher Miner Petrogr 5:183–208CrossRefGoogle Scholar
  110. Schwinn G, Wagner T, Baatartsogt B, Markl G (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 70:965–982.  https://doi.org/10.1016/j.gca.2005.10.022 CrossRefGoogle Scholar
  111. Sebastian U (2013) Die Geologie des Erzgebirges. SpringerGoogle Scholar
  112. Seifert T (2008) Metallogeny and petrogenesis of lampophyres in the mid-European Variscides: post-collosional magmatism and its relationship to Late-Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press, RotterdamGoogle Scholar
  113. Seifert T, Kempe U (1994) Sn-W-Lagerstätten und spätveriszische Magmatite des Erzgebirges. Beih Z Eur J Mineral 6:127–172Google Scholar
  114. Seifert T, Pavlova GG (2016) New 40Ar/39Ar ages of Sn- and W-polymetallic mineralization in the Erzgebirge / Krušné hory (DE, CZ). Goldschmidt AbstractsGoogle Scholar
  115. Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28:1–31.  https://doi.org/10.1016/j.oregeorev.2005.04.005 CrossRefGoogle Scholar
  116. Seward TM, Henderson CMB, Charnock JM (2000) Indium(III) chloride complexing and solvation in hydrothermal solutions to 350°C: an EXAFS study. Chem Geol 167:117–127.  https://doi.org/10.1016/S0009-2541(99)00204-1 CrossRefGoogle Scholar
  117. Shaw DM (1957) The geochemistry of gallium, indium, thallium—a review. Phys Chem Earth 2:164–211.  https://doi.org/10.1016/0079-1946(57)90009-5 CrossRefGoogle Scholar
  118. Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie & Son Limited, GlasgowGoogle Scholar
  119. Sinclair WD, Kooiman GJA, Martin DA, Kjarsgaard IM (2006) Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol Rev 28:123–145.  https://doi.org/10.1016/j.oregeorev.2003.03.001 CrossRefGoogle Scholar
  120. Sośnicka M, Lüders V (2018) Super-deep, TSR-controlled Phanerozoic MVT type Zn-Pb deposits hosted by Zechstein-2 gas reservoir carbonate (Ca2), Lower Saxony Basin, Germany. Chem Geol.  https://doi.org/10.1016/j.chemgeo.2018.04.025
  121. Staude S, Bons PD, Markl G (2009) Hydrothermal vein formation by extension-driven dewatering of the middle crust: an example from SW Germany. Earth Planet Sci Lett 286:387–395.  https://doi.org/10.1016/j.epsl.2009.07.012 CrossRefGoogle Scholar
  122. Steele-MacInnis M, Bodnar RJ, Naden J (2011) Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim Cosmochim Acta 75:21–40.  https://doi.org/10.1016/j.gca.2010.10.002 CrossRefGoogle Scholar
  123. Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HokieFlincs_H2O-NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput Geosci 49:334–337.  https://doi.org/10.1016/j.cageo.2012.01.022 CrossRefGoogle Scholar
  124. Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralisation des Erzgebirges. Freiberger Forschungshefte C 370:1–85Google Scholar
  125. Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkondatierungen zu Bestimmung des Intrusionsalters des Niederbobritzschers Granites. Terra Nostra 97:183–184Google Scholar
  126. Tichomirowa M, Berger H, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade gneisses in the eastern Erzgebirge (central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332.  https://doi.org/10.1016/S0024-4937(00)00066-9 CrossRefGoogle Scholar
  127. Tichomirowa M, Sergeev S, Berger H, Leonhardt D (2012) Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib Mineral Petrol 164:375–396.  https://doi.org/10.1007/s00410-012-0742-8 CrossRefGoogle Scholar
  128. Tikhomirova M, Belyatski BV, Berger H, Koch EA (1995) Evidence of Variscan metamorphism in the eastern Erzgebirge. Terra Nostra 7:133–136Google Scholar
  129. Trinkler M, Monecke T, Thomas R (2005) Constraints on the genesis of yellow fluorite in hydrothermal barite-fluorite veins of the Erzgebirge, eastern Germany: evidence from optical absorption spectroscopy, rare-earth-element data, and fluid-inclusion investigations. Can Mineral 43:883–898.  https://doi.org/10.2113/gscanmin.43.3.883 CrossRefGoogle Scholar
  130. Van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R, vol 122. Springer, BerlinCrossRefGoogle Scholar
  131. Ventura B, Lisker F (2003) Long-term landscape evolution of the northeastern margin of the Bohemian Massif: apatite fission-track data from the Erzgebirge (Germany). Int J Earth Sci 92:691–700.  https://doi.org/10.1007/s00531-003-0344-9 CrossRefGoogle Scholar
  132. Voigt T (2009) Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche Inversionsstruktur: Geologische Hinweise aus den umgebenden Kreidebecken. Z Geol Wiss 37:15–39Google Scholar
  133. von Cotta B (ed) (1850) Gangstudien oder Beiträge zur Kenntniss der Erzgänge. Mit zehn Tafeln Abbildungen und einem Holzschnitt, vol 1. J. G. Engelhardt, FreibergGoogle Scholar
  134. von Cotta B (1861) Die Lehre von den Erzlagerstätten, 2., verb. u. verm. Aufl. Engelhardt, FreibergGoogle Scholar
  135. von Quadt A, Günther D (1999) Evolution of Cambrian eclogitic rocks in the Erzgebirge: a conventional and LA-ICP-MS U-Pb zircon and Sm-Nd study. Terra Nostra 99:164Google Scholar
  136. von Seckendorff V, Timmerman MJ, Kramer W, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of late Carboniferous-early Permian lamprophyres and related volcanic rocks in the Saxothuringian zone of the Variscan Orogen (Germany). Geol Soc Lond, Spec Publ 223:335–359.  https://doi.org/10.1144/GSL.SP.2004.223.01.15 CrossRefGoogle Scholar
  137. Walter BF, Immenhauser A, Geske A, Markl G (2015) Exploration of hydrothermal carbonate magnesium isotope signatures as tracers for continental fluid aquifers, Schwarzwald mining district, SW Germany. Chem Geol 400:87–105.  https://doi.org/10.1016/j.chemgeo.2015.02.009 CrossRefGoogle Scholar
  138. Walter BF, Burisch M, Markl G (2016) Long-term chemical evolution and modification of continental basement brines—a field study from the Schwarzwald, SW Germany. Geofluids 16:604–623.  https://doi.org/10.1111/gfl.12167 CrossRefGoogle Scholar
  139. Werner AG (1791) Neue Theorie von der Entstehung der Gänge: mit Anwendung auf den Bergbau besonders den freibergischen. Gerlach, FreibergGoogle Scholar
  140. Werner O, Lippolt HJ (2000) White mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. Geol Soc Lond, Spec Publ 179:323–336.  https://doi.org/10.1144/GSL.SP.2000.179.01.19 CrossRefGoogle Scholar
  141. Wilson MJ (2013) Rock-forming minerals: clay minerals, Second edition. Rock-forming minerals series, 3C. The Geological Society, LondonGoogle Scholar
  142. Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17:406–409.  https://doi.org/10.1039/B108787H CrossRefGoogle Scholar
  143. Winkler C (1886) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dtsch Chem Ges 19:210–211.  https://doi.org/10.1002/cber.18860190156 CrossRefGoogle Scholar
  144. Wolff R, Dunkl I, Lange J, Tonk C, Voigt T, von Eynatten H (2015a) Superposition of burial and hydrothermal events: post-Variscan thermal evolution of the Erzgebirge, Germany. Terra Nova 27:292–299.  https://doi.org/10.1111/ter.12159 CrossRefGoogle Scholar
  145. Wolff R, Dunkl I, Kempe U, von Eynatten H (2015b) The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: constraints from fluorite (U-Th-Sm)/He thermochronology. Econ Geol 110:2025–2040.  https://doi.org/10.2113/econgeo.110.8.2025 CrossRefGoogle Scholar
  146. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102.  https://doi.org/10.1016/j.oregeorev.2003.06.002 CrossRefGoogle Scholar
  147. Wright K (2009) The incorporation of cadmium, manganese and ferrous iron in sphalerite: insights from computer simulations. Can Mineral 47:615–623.  https://doi.org/10.3749/canmin.47.3.615 CrossRefGoogle Scholar
  148. Wright K, Gale JD (2010) A first principles study of the distribution of iron in sphalerite. Geochim Cosmochim Acta 74:3514–3520.  https://doi.org/10.1016/j.gca.2010.03.014 CrossRefGoogle Scholar
  149. Ye L, Cook NJ, Ciobanu CL, Yuping L, Zhang Q, Tiegeng L, Wei G, Yulong Y, Danyushevsky LV (2011) Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol Rev 39:188–217.  https://doi.org/10.1016/j.oregeorev.2011.03.001 CrossRefGoogle Scholar
  150. Yushkin NP, Yeremin NI, Koroshilova LA (1974) New manganiferous variety of sphalerite. Dokl Akad Nauk SSSR 216:1138–1141Google Scholar
  151. Zhang R, Lehmann B, Seltmann R, Sun W, Li C (2017) Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: the classic Erzgebirge tin province (Saxony and Bohemia). Geology 45:1095–1098CrossRefGoogle Scholar
  152. Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. TOPO-EUROPE: the Geoscience of Coupled Deep Earth-Surface Processes 58:237–269.  https://doi.org/10.1016/j.gloplacha.2006.12.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MineralogieTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfHelmholtz Institute Freiberg for Resource TechnologyFreibergGermany

Personalised recommendations