Advertisement

Mineralium Deposita

, Volume 53, Issue 7, pp 1019–1038 | Cite as

In situ strontium and sulfur isotope investigation of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

  • Kirsi LuolavirtaEmail author
  • Eero Hanski
  • Wolfgang Maier
  • Yann Lahaye
  • Hugh O’Brien
  • Frank Santaguida
Article
  • 523 Downloads

Abstract

The ~ 2.06-Ga Kevitsa mafic-ultramafic intrusion in northern Finland hosts a large disseminated Ni-Cu-PGE deposit. The deposit occurs in the ultramafic olivine-pyroxene cumulates and shows a range in Ni tenors varying from 4–7 wt% (regular ore) to > 10 wt% (Ni-PGE ore). There are also a metal-poor sulfide mineralization (false ore) and contact mineralization that are uneconomic (Ni tenor < 4 wt%). The obtained 87Sr/86Sr(i) values of the Kevitsa ultramafic cumulates are highly radiogenic (> 0.7045) in comparison to the estimated depleted mantle Sr isotope ratio of ~ 0.702 at 2.06 Ga. The sulfur δ34S values are generally higher than + 2‰, which together with the Sr isotope data imply involvement of crustal material in the genesis of the Kevitsa intrusion and its ores. The 87Sr/86Sr(i) values obtained from the ore-bearing domain of the intrusion show stratigraphic variation and exceed 0.7050, with the maximum value reaching up to 0.7109. In contrast, in rocks around the ore domain, the initial Sr isotope compositions remain more or less constant (0.7047–0.7060) throughout the intrusive stratigraphy. The isotope data suggest that the ore-bearing domain of the intrusion represents a dynamic site with multiple injections of variably contaminated magma, whereas the surrounding part of the intrusion experienced a less vigorous emplacement history. No correlation is observed between the strontium and sulfur isotope compositions. This is explained by bulk assimilation of the silicate magma in a deeper staging magma chamber and variable assimilation of sulfur during magma transport into the Kevitsa magma chamber. The low level of metals in false ore and the Ni-depleted nature of its olivine suggest that some sulfides may have precipitated and deposited in the feeder conduit during the initial stage of magma emplacement. Cannibalization of early-formed sulfides by later magma injections may have been important in the formation of the economic ore deposit.

Keywords

Strontium isotopes Sulfur isotopes Ni-Cu-PGE sulfide ore Kevitsa intrusion Central Lapland greenstone belt 

Notes

Acknowledgements

FQM is acknowledged for the access to the company’s database and drill cores. The personnel at the Kevitsa mine are kindly thanked for all their assistance during drill core sampling. We are particularly grateful to Shenghong Yang, Markku Lappalainen, Petri Peltonen, Teemu Voipio, and Tommi Lehtilä for discussion and support of the research. We also want to thank Marco Fiorentini and an anonymous reviewer for valuable review and editors Bernd Lehmann and Pasi Eilu for their comments that helped us improve the manuscript. Leena Palmu is thanked for helping with the mineral chemistry analyses.

Funding information

Financial support for this study was provided by First Quantum Minerals Ltd (FQM) and research grants from the Academy of Finland (grant number 281859), K.H. Renlund Foundation, Tauno Tönning Foundation, and Scholarship Fund of the University of Oulu

Supplementary material

126_2018_792_MOESM1_ESM.pdf (182 kb)
Electronic Supplementary Material 1 In-situ 87Sr/86Sr ratios of the in-house standard determined during two sets of Sr isotope analyses. (PDF 181 kb)
126_2018_792_MOESM2_ESM.xlsx (32 kb)
Electronic Supplementary Material 2 In-situ Sr isotopic analyzes of plagioclase from the Kevitsa intrusion. (XLSX 32 kb)
126_2018_792_MOESM3_ESM.pdf (25 kb)
Electronic Supplementary Material 3 Sample-scale correlations of in-situ determined 87Sr/86Sr(i) and anorthite contents of plagioclase. (PDF 25 kb)
126_2018_792_MOESM4_ESM.xlsx (19 kb)
Electronic Supplementary Material 4 In-situ S isotopic analyses of pyrrhotite and pyrite from the Kevitsa intrusion (XLSX 18 kb)

References

  1. Arndt N, Lesher C, Czamanske G (2005) Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. Economic Geology, 100th Anniversary Volume, pp 5–24Google Scholar
  2. Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Mineral Petrol 93(4):524–531.  https://doi.org/10.1007/BF00371722 CrossRefGoogle Scholar
  3. Barnes S-J, Lightfoot P (2005) Formation of magmatic nickel-sulfide ore deposits and processes affecting their copper and platinum-group element contents. Economic Geology 100th Anniversary Volume, pp 179–213Google Scholar
  4. Barnes S-J, Melezhik VA, Sokolov SV (2001) The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. Can Mineral 39(2):447–471.  https://doi.org/10.2113/gscanmin.39.2.447 CrossRefGoogle Scholar
  5. Boudreau AE, McCallum IS (1992) Infiltration metasomatism in layered intrusions—an example from the Stillwater Complex, Montana. J Volcanol Geotherm Res 52(1–3):171–183.  https://doi.org/10.1016/0377-0273(92)90139-5 CrossRefGoogle Scholar
  6. Brownscombe W, Ihlenfeld C, Coppard J, Hartshorne C, Klatt S, Siikaluoma JK, Herrington RJ (2015) The Sakatti Cu-Ni-PGE sulfide deposit in northern Finland. In: Maier WD, Lahtinen R, O’Brien H (eds) Mineral deposits of Finland. Elsevier, Amsterdam, pp 211–252.  https://doi.org/10.1016/B978-0-12-410438-9.00009-1 CrossRefGoogle Scholar
  7. Chen CJ, Chen B, Li Z, Wang ZQ (2016) Important role of magma mixing in generating the Mesozoic monzodioritic–granodioritic intrusions related to Cu mineralization, Tongling, East China: evidence from petrological and in situ Sr-Hf isotopic data. Lithos 248–251:80–93CrossRefGoogle Scholar
  8. Chutas NI, Bates E, Prevec SA, Coleman DS, Boudreau AE (2012) Sr and Pb isotopic disequilibrium between coexisting plagioclase and orthopyroxene in the Bushveld Complex, South Africa: microdrilling and progressive leaching evidence for sub-liquidus contamination within a crystal mush. Contrib Mineral Petrol 163(4):653–668.  https://doi.org/10.1007/s00410-011-0691-7 CrossRefGoogle Scholar
  9. Cox KG, Hawkesworth CJ (1985) Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. J Petrol 26(2):355–377.  https://doi.org/10.1093/petrology/26.2.355 CrossRefGoogle Scholar
  10. Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110(3–4):265–280.  https://doi.org/10.1016/S0377-0273(01)00213-X CrossRefGoogle Scholar
  11. Danyushevsky LV, Plechov P (2011) Petrolog3; integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021CrossRefGoogle Scholar
  12. Depaolo DJ (1985) Isotopic studies of processes in mafic magma chambers: I. The Kiglapait intrusion, Labrador. J Petrol 26(4):925–951.  https://doi.org/10.1093/petrology/26.4.925 CrossRefGoogle Scholar
  13. Duan J, Li C, Qian Z, Jiao J, Ripley EM, Feng Y (2016) Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Mineral Deposita 51(4):557–574.  https://doi.org/10.1007/s00126-015-0626-8 CrossRefGoogle Scholar
  14. Eales HV, Marsh JS, Mitchell AA, De Klerk WJ, Kruger FJ, Field M (1986) Some geochemical constraints upon models for the crystallization of the upper critical zone-main zone interval, northwestern Bushveld complex. Mineral Mag 50(358):567–582.  https://doi.org/10.1180/minmag.1986.050.358.03 CrossRefGoogle Scholar
  15. Eales HV, De Klerk WJ, Butcher AR, Kruger FJ (1990) The cyclic unit beneath the UG1 chromitite (UG1FW unit) at RPM Union Section Platinum Mine—Rosetta stone of the Bushveld Upper Critical Zone. Mineral Mag 54(374):23–43.  https://doi.org/10.1180/minmag.1990.054.374.03 CrossRefGoogle Scholar
  16. Egorova V, Latypov R (2012a) Processes operating during the initial stage of magma chamber evolution: insights from the marginal reversal of the Imandra Layered Intrusion, Russia. J Petrol 53(1):3–26.  https://doi.org/10.1093/petrology/egr054 CrossRefGoogle Scholar
  17. Egorova V, Latypov R (2012b) Prolonged magma emplacement as a mechanism for the origin of the marginal reversal of the Fongen-Hyllingen layered intrusion, Norway. Geol Mag 149(05):909–926.  https://doi.org/10.1017/S001675681200009X CrossRefGoogle Scholar
  18. Fleet ME, Stone WE, Crocket JH (1991) Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: effects of melt composition, concentration, and oxygen fugacity. Geochim Cosmochim Acta 55(9):2545–2554.  https://doi.org/10.1016/0016-7037(91)90372-C CrossRefGoogle Scholar
  19. Gao JF, Zhou MF, Robinson PT, Wang CY, Zhao JH, Malpas J (2015) Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau. J Asian Earth Sci 98:1–17.  https://doi.org/10.1016/j.jseaes.2014.10.036 CrossRefGoogle Scholar
  20. Gregory J, Journet N, White G, Lappalainen M (2011) Kevitsa copper nickel project in Finland: technical report for the mineral resources and reserves of the Kevitsa project. First Quantum Minerals LtdGoogle Scholar
  21. Grinenko LN, Hanski E, Grinenko VA (2003) Formation conditions of the Keivitsa Cu-Ni deposit, northern Finland: evidence from S and C isotopes. Geochem Int 41:154–167Google Scholar
  22. Hanski E, Huhma H (2005) Central Lapland greenstone belt. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian bedrock of Finland—key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 139–193.  https://doi.org/10.1016/S0166-2635(05)80005-2 CrossRefGoogle Scholar
  23. Hanski EJ, Huhma H, Suominen IM, Walker RJ (1997) Geochemical and isotopic (Os, Nd) study of the early Proterozoic Keivitsa intrusion and its Cu-Ni deposit, northern Finland. In: Papunen H (ed) Mineral deposits: research and exploration—where do they meet? Proceedings of the fourth biennial SGA meeting, Turku, 11–13 August, 1997. A. A. Balkema, Rotterdam, pp 435–438Google Scholar
  24. Hanski E, Huhma H, Rastas P, Kamenetsky VS (2001a) The Palaeoproterozoic komatiite-picrite association of Finnish Lapland. J Petrol 42(5):855–876.  https://doi.org/10.1093/petrology/42.5.855 CrossRefGoogle Scholar
  25. Hanski E, Walker RJ, Huhma H, Suominen I (2001b) The Os and Nd isotopic systematics of the 2.44 Ga Akanvaara and Koitelainen mafic layered intrusions in northern Finland. Precambrian Res 109(1–2):73–102.  https://doi.org/10.1016/S0301-9268(01)00142-5 CrossRefGoogle Scholar
  26. Herzberg C, O'Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43(10):1857–1883.  https://doi.org/10.1093/petrology/43.10.1857 CrossRefGoogle Scholar
  27. Huhma H, Hanski E, Kontinen A, Vuollo J, Mänttäri I, Lahaye Y (2017) Sm-Nd and U-Pb isotope geochemistry of the Palaeoproterozoic mafic magmatism in eastern and northern Finland. Geol Surv Finl, Spec Pap (submitted for publication)Google Scholar
  28. Karykowski BT, Maier WD (2017) Microtextural characterisation of the Lower Zone in the western limb of the Bushveld Complex, South Africa: evidence for extensive melt migration within a sill complex. Contrib Mineral Petrol 172(8):60.  https://doi.org/10.1007/s00410-017-1380-y CrossRefGoogle Scholar
  29. Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral Deposita 45(3):241–257.  https://doi.org/10.1007/s00126-009-0271-1 CrossRefGoogle Scholar
  30. Kröner A, Puustinen K, Hickman M (1981) Geochronology of an Archaean tonalitic gneiss dome in northern Finland and its relation with an unusual overlying volcanic conglomerate and komatiitic greenstone. Contrib Mineral Petrol 76(1):33–41.  https://doi.org/10.1007/BF00373681 CrossRefGoogle Scholar
  31. Kruger FJ (1994) The Sr-isotopic stratigraphy of the western Bushveld Complex. S Afr J Geol 97:393–398Google Scholar
  32. Latypov R, Hanski E, Lavrenchuk A, Huhma H, Havela T (2011) A ‘three-increase model’ for the origin of the marginal reversal of the Koitelainen layered intrusion, Finland. J Petrol 52(4):733–764.  https://doi.org/10.1093/petrology/egr001 CrossRefGoogle Scholar
  33. Le Vaillant M, Barnes SJ, Fiorentini ML, Santaguida F, Törmänen T (2016) Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit. Ore Geol Rev 72:128–148.  https://doi.org/10.1016/j.oregeorev.2015.06.002 CrossRefGoogle Scholar
  34. Le Vaillant M, Hill J, Barnes SJ (2017) Simplifying drill-hole domains for 3D geochemical modelling: an example from the Kevitsa Ni-Cu-(PGE) deposit. Ore Geol Rev 90:388–398.  https://doi.org/10.1016/j.oregeorev.2017.05.020 CrossRefGoogle Scholar
  35. Lee CA, Butcher AR (1990) Scientific communications: cyclicity in the Sr isotope stratigraphy through the Merensky and Bastard reef units, Atok section, Eastern Bushveld Complex. Econ Geol 85(4):877–883.  https://doi.org/10.2113/gsecongeo.85.4.877 CrossRefGoogle Scholar
  36. Lehtonen M, Airo ML, Eilu P, Hanski E, Kortelainen V, Lanne E, Manninen T, Rastas P, Räsänen J, Virransalo P (1998) The stratigraphy, petrology and geochemistry of the Kittilä greenstone area, northern Finland: a report of the Lapland Volcanite Project. Geol Surv Finl Rep Invest 140 (in Finnish with English summary)Google Scholar
  37. Li C, Naldrett AJ (1999) Geology and petrology of the Voisey’s Bay intrusion: reaction of olivine with sulfide and silicate liquids. Lithos 47(1–2):1–31.  https://doi.org/10.1016/S0024-4937(99)00005-5 CrossRefGoogle Scholar
  38. Li C, Ripley M (2005) Empirical equations to predict sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineral Deposita 40(2):218–230.  https://doi.org/10.1007/s00126-005-0478-8 CrossRefGoogle Scholar
  39. Li C, Ripley EM, Maier WD, Gomwe TES (2002) Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: evidence for sulfur contamination and multiple magma emplacements. Chem Geol 188(3–4):149–159.  https://doi.org/10.1016/S0009-2541(02)00098-0 CrossRefGoogle Scholar
  40. Li C, Ripley EM, Naldrett AJ (2003) Compositional variations of olivine and sulfur isotopes in the Noril'sk and Talnakh intrusions, Siberia: implications for ore-forming processes in dynamic magma conduits. Econ Geol 98:69–86Google Scholar
  41. Li C, Xu Z, de Waal SA, Ripley EM, Maier WD (2004) Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: implications for ore genesis. Mineral Deposita 39(2):159–172.  https://doi.org/10.1007/s00126-003-0389-5 CrossRefGoogle Scholar
  42. Li C, Naldrett AJ, Ripley EM (2007) Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic/ultramafic intrusions: principles, modeling, and examples from Voisey’s Bay. Earth Sci Front 14(5):177–183.  https://doi.org/10.1016/S1872-5791(07)60043-8 CrossRefGoogle Scholar
  43. Li C, Ripley EM, Thakurta J, Stifter EC, Qi L (2013) Variations of olivine Fo–Ni contents and highly chalcophile element abundances in arc ultramafic cumulates, southern Alaska. Chem Geol 351:15–28.  https://doi.org/10.1016/j.chemgeo.2013.05.007 CrossRefGoogle Scholar
  44. Lindstrom DJ, Weill DF (1978) Partitioning of transition metals between diopside and coexisting silicate liquids. I. Nickel, cobalt and manganese. Geochim Cosmochim Acta 42(6):817–831.  https://doi.org/10.1016/0016-7037(78)90095-9 CrossRefGoogle Scholar
  45. Liu PP, Zhou MF, Wang CY, Xing CM, Gao JF (2014) Open magma chamber processes in the formation of the Permian Baima mafic-ultramafic layered intrusion, SW China. Lithos 184–187:194–208CrossRefGoogle Scholar
  46. Luolavirta K, Hanski E, Maier W, Santaguida F (2018a) Characterization and origin of dunitic rocks in the Ni-Cu ore-bearing Kevitsa intrusion, northern Finland: whole rock and mineral chemical constraints. Bull Geol Soc Finl. Online at http://www.geologinenseura.fi/bulletin/In_Press/index.html
  47. Luolavirta K, Hanski E, Maier W, Santaguida F (2018b) Whole-rock and mineral compositional constraints on the magmatic evolution of the Ni-Cu-(PGE) ore-bearing Kevitsa intrusion, northern Finland. Lithos 296–299:37–53CrossRefGoogle Scholar
  48. Luukas J, Kousa J, Nironen M, Vuollo J (2017) Major stratigraphic units in the bedrock of Finland, and an approach to tectonostratigraphic division. Geol Surv Finl Spec Pap 60:9–40Google Scholar
  49. Maier WD, Groves DI (2011) Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits. Mineral Deposita 46(8):841–857.  https://doi.org/10.1007/s00126-011-0339-6 CrossRefGoogle Scholar
  50. Maier WD, Barnes SJ, De Waal SA (1998) Exploration for magmatic Ni-Cu-PGE sulphide deposits: a review of recent advances in the use of geochemical tools, and their application to some South African ores. S Afr J Geol 101:237–253Google Scholar
  51. Maier WD, Arndt NT, Curl EA (2000) Progressive crustal contamination of the Bushveld complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib Mineral Petrol 140(3):316–327.  https://doi.org/10.1007/s004100000186 CrossRefGoogle Scholar
  52. Maier WD, Li C, De Waal SA (2001) Why are there no major Ni-Cu sulfide deposits in large layered mafic-ultramafic intrusions? Can Mineral 39(2):547–556.  https://doi.org/10.2113/gscanmin.39.2.547 CrossRefGoogle Scholar
  53. Malitch KN, Latypov RM, Badanina IY, Sluzhenikin SF (2014) Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk province (Russia): evidence from copper and sulfur isotopes. Lithos 204:172–187.  https://doi.org/10.1016/j.lithos.2014.05.014 CrossRefGoogle Scholar
  54. Mangwegape M, Roelofse F, Mock T, Carlson RW (2016) The Sr-isotopic stratigraphy of the Northern Limb of the Bushveld Complex, South Africa. J Afr Earth Sci 113:95–100.  https://doi.org/10.1016/j.jafrearsci.2015.10.016 CrossRefGoogle Scholar
  55. Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63(7-8):1173–1180.  https://doi.org/10.1016/S0016-7037(98)00289-0 CrossRefGoogle Scholar
  56. Meyer GB, Wilson JR (1999) Olivine-rich units in the Fongen-Hyllingen intrusion, Norway; implications for magma chamber processes. Lithos 47(3-4):157–179.  https://doi.org/10.1016/S0024-4937(99)00013-4 CrossRefGoogle Scholar
  57. Mitchell AA (1990) The stratigraphy, petrography and mineralogy of the main zone of the northwestern Bushveld Complex. S Afr J Geol 93:818–831Google Scholar
  58. Mitchell AA, Eales HV, Kruger FJ (1998) Magma replenishment, and the significance of poikilitic textures, in the lower main zone of the western Bushveld Complex, South Africa. Mineral Mag 62(4):435–450.  https://doi.org/10.1180/002646198547783 CrossRefGoogle Scholar
  59. Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal At Spectrom 24(2):209–214.  https://doi.org/10.1039/B805995K CrossRefGoogle Scholar
  60. Mutanen T (1997) Geology and ore petrology of the Akanvaara and Koitelainen mafic layered intrusions and the Keivitsa-Satovaara layered complex, northern Finland. Geol Surv Finl Bull 395Google Scholar
  61. Mutanen T, Huhma H (2001) U-Pb geochronology of the Koitelainen, Akanvaara and Keivitsa layered intrusions and related rocks. Geol Surv Finl Spec Pap 33:229–246Google Scholar
  62. Naldrett AJ (1999) World-class Ni-Cu-PGE deposits; key factors in their genesis. Mineral Deposita 34(3):227–240.  https://doi.org/10.1007/s001260050200 CrossRefGoogle Scholar
  63. Naldrett AJ (2004) Magmatic sulfide deposits; geology, geochemistry and exploration. Springer, Berlin.  https://doi.org/10.1007/978-3-662-08444-1 CrossRefGoogle Scholar
  64. Naldrett AJ (2011) Fundamentals of magmatic sulfide deposits. Rev Econ Geol 17:1–50Google Scholar
  65. Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP, van der Auwera J (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J Petrol 51(6):1203–1236.  https://doi.org/10.1093/petrology/egq016 CrossRefGoogle Scholar
  66. O’Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of mantle differentiation and crustal growth. J Geophys Res 84(B11):6091–6101.  https://doi.org/10.1029/JB084iB11p06091 CrossRefGoogle Scholar
  67. Pang K, Li C, Zhou M, Ripley EM (2009) Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos 110(1–4):199–214.  https://doi.org/10.1016/j.lithos.2009.01.007 CrossRefGoogle Scholar
  68. Peach CL, Mathez EA, Keays RR (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB; implications for partial melting. Geochim Cosmochim Acta 54(12):3379–3389.  https://doi.org/10.1016/0016-7037(90)90292-S CrossRefGoogle Scholar
  69. Rankenburg K, Lassiter JC, Brey G (2004) Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain—constraints on magma genesis and crustal contamination. Contrib Mineral Petrol 147(2):129–144.  https://doi.org/10.1007/s00410-003-0534-2 CrossRefGoogle Scholar
  70. Ripley EM, Park YR, Li C, Naldrett AJ (1999) Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey’s Bay Ni-Cu-Co deposit, Labrador, Canada. Lithos 47(1–2):53–68.  https://doi.org/10.1016/S0024-4937(99)00007-9 CrossRefGoogle Scholar
  71. Ripley EM, Li C, Shin D (2002) Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey’s Bay, Labrador: d34S, d13C, and Se/S evidence. Econ Geol 97(6):1307–1318.  https://doi.org/10.2113/gsecongeo.97.6.1307 CrossRefGoogle Scholar
  72. Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in formation of magmatic Cu-Ni-(PGE) deposits. Econ Geol 98(3):635-641Google Scholar
  73. Ripley EM, Sarkar A, Li C (2005) Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Econ Geol 100(7):1349–1361.  https://doi.org/10.2113/gsecongeo.100.7.1349 CrossRefGoogle Scholar
  74. Ripley EM, Li C (2013) Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Econ Geol 108(1):45–58.  https://doi.org/10.2113/econgeo.108.1.45 CrossRefGoogle Scholar
  75. Rotenberg E, Davis DW, Amelin Y, Ghosh S, Bergquist BA (2012) Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochim Cosmochim Acta 85:41–57.  https://doi.org/10.1016/j.gca.2012.01.016 CrossRefGoogle Scholar
  76. Santaguida F, Luolavirta K, Lappalainen M, Ylinen J, Voipio T, Jones S (2015) The Kevitsa Ni-Cu-PGE deposit in the Central Lapland Greenstone Belt in Finland. In: Maier WD, Lahtinen R, O’Brien H (eds) Mineral deposits of Finland. Elsevier, Amsterdam, pp 195–210.  https://doi.org/10.1016/B978-0-12-410438-9.00008-X CrossRefGoogle Scholar
  77. Seabrook CL, Cawthorn RG, Kruger FJ (2005) The Merensky reef, Bushveld Complex: mixing of minerals not mixing of magmas. Econ Geol 100(6):1191–1206.  https://doi.org/10.2113/gsecongeo.100.6.1191 CrossRefGoogle Scholar
  78. Seat Z, Beresford SW, Grguric BA, Waugh RS, Hronsky JMA, Gee MAM, Groves DI, Mathison CI (2007) Architecture and emplacement of the Nebo-Babel gabbronorite-hosted magmatic Ni-Cu-PGE sulphide deposit, West Musgrave, Western Australia. Mineral Deposita 42(6):551–581.  https://doi.org/10.1007/s00126-007-0123-9 CrossRefGoogle Scholar
  79. Seat Z, Beresford SW, Grcuric BA, Gee MAM, Grassineau NV (2009) Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits: evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia. Econ Geol 104(4):521–538.  https://doi.org/10.2113/gsecongeo.104.4.521 CrossRefGoogle Scholar
  80. Song X, Keays RR, Zhou M, Qi L, Ihlenfeld C, Xiao J (2009) Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochim Cosmochim Acta 73(2):404–424.  https://doi.org/10.1016/j.gca.2008.10.029 CrossRefGoogle Scholar
  81. Song X, Wang Y, Chen L (2011) Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems: features, formation and exploration. Geosci Front 2(3):375–384.  https://doi.org/10.1016/j.gsf.2011.05.005 CrossRefGoogle Scholar
  82. Sparks RS, Huppert HE, Kerr RC, McKenzie DP, Tait SR (1985) Postcumulus processes in layered intrusions. Geol Mag 122(05):555–568.  https://doi.org/10.1017/S0016756800035470 CrossRefGoogle Scholar
  83. Tepley FJ III, Davidson JP (2003) Mineral-scale Sr-isotope constraints on magma evolution and chamber dynamics in the Rum layered intrusion, Scotland. Contrib Mineral Petrol 145(5):628–641.  https://doi.org/10.1007/s00410-003-0481-y CrossRefGoogle Scholar
  84. Tepley FJ III, Davidson JP, Clynne MA (1999) Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen volcanic center, California. J Petrol 40(5):787–806.  https://doi.org/10.1093/petroj/40.5.787 CrossRefGoogle Scholar
  85. Tepley FJ III, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico. J Petrol 41(9):1397–1411.  https://doi.org/10.1093/petrology/41.9.1397 CrossRefGoogle Scholar
  86. Thakurta J, Ripley EM, Li C (2008) Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska. Geochem Geophys Geosyst 9(7).  https://doi.org/10.1029/2008GC001982
  87. Törmänen T, Konnunaho JP, Hanski E, Moilanen M, Heikura P (2016) The Paleoproterozoic komatiite-hosted PGE mineralization at Lomalampi, Central Lapland Greenstone Belt, northern Finland. Mineral Deposita 51(3):411–430.  https://doi.org/10.1007/s00126-015-0615-y CrossRefGoogle Scholar
  88. Wilson AH, Armin Z, Gerdes A (2017) In situ Sr isotopes in plagioclase and trace element systematics in the lowest part of the Eastern Bushveld Complex: dynamic processes in an evolving magma chamber. J Petrol 58:360–327Google Scholar
  89. Yang SH, Maier WD, Lahaye Y, O'Brien H (2013a) Strontium isotope disequilibrium of plagioclase in the Upper Critical Zone of the Bushveld Complex: evidence for mixing of crystal slurries. Contrib Mineral Petrol 166(4):959–974.  https://doi.org/10.1007/s00410-013-0903-4 CrossRefGoogle Scholar
  90. Yang S, Maier WD, Hanski EJ, Lappalainen M, Santaguida F, Määttä S (2013b) Origin of ultra-nickeliferous olivine in the Kevitsa Ni-Cu-PGE-mineralized intrusion, northern Finland. Contrib Mineral Petrol 166(1):81–95.  https://doi.org/10.1007/s00410-013-0866-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oulu Mining SchoolUniversity of OuluOuluFinland
  2. 2.The School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  3. 3.Geological Survey of FinlandEspooFinland
  4. 4.First Cobalt CorbTorontoCanada

Personalised recommendations