Advertisement

Mineralium Deposita

, Volume 53, Issue 6, pp 775–795 | Cite as

A genetic model based on evapoconcentration for sediment-hosted exotic-Cu mineralization in arid environments: the case of the El Tesoro Central copper deposit, Atacama Desert, Chile

  • A. Fernández-Mort
  • R. Riquelme
  • A. M. Alonso-Zarza
  • E. Campos
  • T. Bissig
  • C. Mpodozis
  • S. Carretier
  • C. Herrera
  • M. Tapia
  • H. Pizarro
  • S. Muñoz
Article
  • 460 Downloads

Abstract

Although the formation of exotic-Cu deposits is controlled by multiple factors, the role of the sedimentary environment has not been well defined. We present a case study of the El Tesoro Central exotic-Cu deposit located in the Atacama Desert of northern Chile. This deposit consists of two mineralized bodies hosted within Late Cenozoic gravels deposited in an arid continental environment dominated by alluvial fans with sub-surficial ponded water bodies formed at the foot of these fans or within the interfan areas. Both exotic-Cu orebodies mostly consist of chrysocolla, copper wad, atacamite, paratacamite, quartz, opal, and calcite. The most commonly observed paragenesis comprises chrysocolla, silica minerals, and calcite and records a progressive increase in pH, which is notably influenced by evaporation. The results of stable isotope analyses (δ13C and δ18O) and hydrogeochemical simulations confirm that evapoconcentration is the main controlling factor in the exotic-Cu mineralization at El Tesoro Central. This conclusion complements the traditional genetic model based on the gradual neutralization of highly oversaturated Cu-bearing solutions that progressively cement the gravels and underlying bedrock regardless of the depositional environment. This study concludes that in exotic-Cu deposits formed relatively far from the source, a favorable sedimentary environment and particular hydrologic and climatic conditions are essential to trap, accumulate, evapoconcentrate, neutralize and saturate Cu-bearing solutions to trigger mineralization. Thus, detailed sedimentological studies should be incorporated when devising exploration strategies in order to discover new exotic-Cu resources, particularly if they are expected to have formed relatively far from the metal sources.

Keywords

Exotic-Cu deposit Atacama Desert Chrysocolla Sediment-hosted ore deposit Supergene mineralization Stable isotopes 

Notes

Acknowledgements

We thank Antofagasta Minerals S.A. and its personnel for their cooperation and assessment during the field work. We gratefully acknowledge Laura Evenstar and Bernd Lehmann for their useful reviews that have largely contributed to improve this work.

Funding information

This study was funded by the PhD grant CONICYT-PCHA/Doctorado Nacional/2016-21160193 of the corresponding author and by the research projects FONDECYT N°1121041 and Anillo ACT1203 (CONICYT, Chilean Government), LMI-COPEDIM (IRD, French Government) and CGL2014-54818-P (Ministerio de Ciencia e Innovación, Spanish Government).

Supplementary material

126_2017_780_MOESM1_ESM.gif (23 kb)
ESM 1 Table of equivalence between the gravel units defined by Mora et al. (2004) and Riquelme et al. (2017). The yellow rectangle indicates the position of the sedimentary log illustrated in Fig. 4B and the narrow green rectangles represent both exotic-Cu orebodies of El Tesoro Central (GIF 23 kb)
126_2017_780_MOESM6_ESM.eps (4.5 mb)
High resolution image (EPS 4562 kb)
126_2017_780_MOESM2_ESM.gif (88 kb)
ESM 2 Table of facies association (A1, A2 and A3) description and interpretation (GIF 87 kb)
126_2017_780_MOESM7_ESM.eps (15.7 mb)
High resolution image (EPS 16082 kb)
126_2017_780_MOESM3_ESM.gif (47 kb)
B (GIF 47 kb)
126_2017_780_MOESM8_ESM.eps (15.7 mb)
High resolution image (EPS 16052 kb)
126_2017_780_MOESM4_ESM.gif (63 kb)
ESM 3 (A) Numerical δ13C and δ18O values of the analyses performed on twenty-eight samples distributed along the sedimentary log illustrated in the Fig. 4B. The height (m) and the symbols indicate the position of each sample within the sedimentary log. (B) Numerical δ13C and δ18O values of the analyses performed on specific points of hand samples from the upper exotic-Cu orebody. The precise location of each analysis is shown in the photographs of Fig. 8. (GIF 63 kb)
126_2017_780_MOESM9_ESM.eps (12.3 mb)
High resolution image (EPS 12627 kb)
126_2017_780_MOESM5_ESM.gif (52 kb)
ESM 4 Used and obtained data in the PHREEQC modeling of the thermodynamic feasibility of the formation of oxidized copper minerals from the evaporation of Cu-bearing aqueous solutions within an exotic environment (GIF 52 kb)
126_2017_780_MOESM10_ESM.eps (9.4 mb)
High resolution image (EPS 9601 kb)

References

  1. Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Sci Rev 60(3-4):261–298.  https://doi.org/10.1016/S0012-8252(02)00106-X CrossRefGoogle Scholar
  2. Alonso-Zarza AM, Calvo JP, García del Cura MA (1992) Palustrine sedimentation and associated features—grainification and pseudo-microkarst—in the middle Miocene (intermediate unit) of the Madrid Basin, Spain. Sediment Geol 76(1-2):43–61.  https://doi.org/10.1016/0037-0738(92)90138-H CrossRefGoogle Scholar
  3. Alonso Zarza AM, Calvo JP (2000) Palustrine sedimentation in an episodically sub-siding basin: the Miocene of the northern Teruel Graben (Spain). Palaeogeogr Palaeoclimatol Palaeoecol 160(1-2):1–21.  https://doi.org/10.1016/S0031-0182(00)00041-9 CrossRefGoogle Scholar
  4. Alonso-Zarza AM, Wright VP (2010) Palustrine carbonates. In Alonso-Zarza AM, Tanner L (eds) Carbonates in Continental Settings. Facies, Environments and Processes. Developm Sedimentol 61:103–131CrossRefGoogle Scholar
  5. Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100(10):1640–1656.  https://doi.org/10.1130/0016-7606(1988)100<1640:MMCCIT>2.3.CO;2 CrossRefGoogle Scholar
  6. Amundson R, Dietrich W, Bellugi D, Ewing S, Nishiizumi K, Chong G, Owen J, Finkel R, Heimsath A, Stewart B (2012) Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Geol Soc Am Bull 124(7–8):1048–1070.  https://doi.org/10.1130/B30445.1 CrossRefGoogle Scholar
  7. Anderson JA (1982) Characteristics of leached capping and techniques of appraisal. In: Titley SR (ed) Advances in the geology of porphyry copper deposits, Southwest North America. Tucson Univ Arizona Press, Tucson, pp 245–287Google Scholar
  8. Arancibia G, Matthews SJ, De Arce CP (2006) K–Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, northern Chile: tectonic and climatic relation. J Geol Soc Lond 163(1):107–118.  https://doi.org/10.1144/0016-764904-161 CrossRefGoogle Scholar
  9. Aravena R, Suzuki O, Pena H, Pollastri A, Fuenzalida H, Grilli A (1999) Isotopic composition and origin of the precipitation in northern Chile. Appl Geochem 14(4):411–422.  https://doi.org/10.1016/S0883-2927(98)00067-5 CrossRefGoogle Scholar
  10. Ball JW, Nordstrom DK (1991) User’s manual forWATEQ4F with revised thermodynamic database and test cases for calculating speciation of major, trace, and redox elements in natural waters. USGS Open-File Report 91–183Google Scholar
  11. Barker SLL, Dipple GM, Dong F, Baer DS (2011) Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals. Anal Chem 83(6):2220–2226.  https://doi.org/10.1021/ac103111y CrossRefGoogle Scholar
  12. Bird MI, Andrew AS, Chivas AR, Lock DE (1989) An isotopic study of surficial alunite in Australia 1: hydrogen and sulphur isotopes. Geochim Cosmochim Acta 53(12):3223–3237.  https://doi.org/10.1016/0016-7037(89)90103-8 CrossRefGoogle Scholar
  13. Bissig T, Riquelme R (2010) Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite-group minerals. Earth Planet Sci Lett 299(3-4):447–457.  https://doi.org/10.1016/j.epsl.2010.09.028 CrossRefGoogle Scholar
  14. Bouzari F, Clark AH (2002) Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I region, northern Chile. Econ Geol 97(8):1701–1740.  https://doi.org/10.2113/gsecongeo.97.8.1701 CrossRefGoogle Scholar
  15. Bustillo MA (2010) Silicification of continental carbonates. In Alonso-Zarza AM, Tanner L (eds) Carbonates in continental settings. Facies, Environments and Processes. Developm Sedimentol 62:153–178Google Scholar
  16. Bustillo MA, Alonso-Zarza AM (2007) Overlapping of pedogenesis and meteoric diagenesis in distal alluvial and shallow lacustrine deposits in the Madrid Miocene Basin, Spain. Sediment Geol 198(3-4):255–271.  https://doi.org/10.1016/j.sedgeo.2006.12.006 CrossRefGoogle Scholar
  17. Calvo JP, Alonso-Zarza AM, García del Cura MA (1989) Models of marginal lacustrine sedimentation in response to varied source areas in the Madrid Basin (Central Spain). Palaeogeogr Palaeoclimatol Palaeoecol 70(1-3):199–214.  https://doi.org/10.1016/0031-0182(89)90090-4 CrossRefGoogle Scholar
  18. Cameron EM, Leybourne MI, Palacios C (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineral Deposita 42(3):205–218.  https://doi.org/10.1007/s00126-006-0108-0 CrossRefGoogle Scholar
  19. Campos E, Menzies AH, Hernandez V, Sola S, Barraza M, Riquelme R (2015) Understanding exotic-Cu mineralisation: Part I—characterisation of chrysocolla. In 13th SGA Biennial meeting, Nancy, Proceedings 3:1153Google Scholar
  20. Camus F (2003) Geología de los sistemas porfíricos en los Andes de Chile. CODELCO-SERNAGEOMIN-Sociedad Geológica de Chile, Santiago de Chile, pp 1–267Google Scholar
  21. Chadwick OA, Hendricks DM, Nettleton WD (1989) Silicification of Holocene soils in northern Monitor Valley, Nevada. Soil Sci Soc Am J 53(1):158–164.  https://doi.org/10.2136/sssaj1989.03615995005300010030x CrossRefGoogle Scholar
  22. Charrier R, Farías M, Maksaev V (2009) Evolución tectónica, paleogeográfica y metalogénica durante el Cenozoico en los Andes de Chile norte y central e implicaciones para las regiones adyacentes de Bolivia y Argentina. Rev Asoc Geol Argentina 65:05–35Google Scholar
  23. Chavez WX (2000) Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals. Soc Econ Geol Newsletter 41:10–21Google Scholar
  24. Chong G (1988) The Cenozoic saline deposits of the Chilean Andes between 18 degrees and 27 degrees south latitude. In Bahlburg H, Breitkreuz C, Giese P (eds) The Southern Central Andes. Springer Berlin Heidelberg, 11:137–151Google Scholar
  25. Clark AH, Tosdal RM, Farrar E, Plazolles VA (1990) Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, southeastern Peru. Econ Geol 85(7):1604–1628.  https://doi.org/10.2113/gsecongeo.85.7.1604 CrossRefGoogle Scholar
  26. Crane MJ, Sharpe JL, Williams P (2001) Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Rec Aust Mus 53(1):49–56.  https://doi.org/10.3853/j.0067-1975.53.2001.1323 CrossRefGoogle Scholar
  27. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  28. Deocampo (2010) The geochemistry of continental carbonates. In Alonso-Zarza AM, Tanner L (eds) Carbonates in Continental Settings. Facies, Environments and Processes. Developm Sedimentol 62:1–59Google Scholar
  29. de Wet CB, Godfrey L, de Wet AP (2015) Sedimentology and stable isotopes from a lacustrine-to-palustrine limestone deposited in an arid setting, climatic and tectonic factors: Miocene–Pliocene Opache formation, Atacama Desert, Chile. Palaeogeogr Palaeoclimatol Palaeoecol 426:46–67.  https://doi.org/10.1016/j.palaeo.2015.02.039 CrossRefGoogle Scholar
  30. Dold B (2006) Geochemical modelling of the exotic mineralization of the Exotica deposit at Chuquicamata, Chile. 11th Congreso Geológico Chileno, Antofagasta, Proceedings 2:247–250Google Scholar
  31. Drever JI (1988) The geochemistry of natural waters. Prentice Hall, New Jersey, p 437Google Scholar
  32. Dunai TJ, González G, Juez-Larré J (2005) Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33(4):321–324.  https://doi.org/10.1130/G21184.1 CrossRefGoogle Scholar
  33. Evenstar LA, Hartley AJ, Archer SG, Neilson JE (2016) Climatic and halokinetic controls on alluvial–lacustrine sedimentation during compressional deformation, Andean forearc, northern Chile. Basin Res 28(5):634–657.  https://doi.org/10.1111/bre.12124 CrossRefGoogle Scholar
  34. Evenstar LA, Mather AE, Hartley AJ, Stuart FM, Sparks RSJ, 789 Cooper, FJ (2017) Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru. Earth-Sci Rev 171:1-27.  https://doi.org/10.1016/j.earscirev.2017.04.004
  35. Fam R (1979) Mineralization de cobre del tipo “exotico” en el norte de Chile. 2nd Congreso Geológico Chileno, Arica, Proceedings 2:235–263Google Scholar
  36. Gaines RV, Skinner HCW, Foord EE, Mason B, Rosenzweig A (1997) Dana’s new mineralogy, 8th edn. John Wiley, New YorkGoogle Scholar
  37. Hartley AJ, Rice CM (2005) Controls on supergene enrichment of porphyry copper deposits in the Central Andes: a review and discussion. Mineral Deposita 40(5):515–525.  https://doi.org/10.1007/s00126-005-0017-7 CrossRefGoogle Scholar
  38. Harvey A (2011) Dryland alluvial fans. In Thomas DSG (ed) Arid zone geomorphology: process, form and change in Drylands, 3rd ed, Wiley, pp 333–371Google Scholar
  39. Hoefs (2008) Stable isotope geochemistry. Springer, BerlinGoogle Scholar
  40. Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23(12):1453–1464.  https://doi.org/10.1002/joc.938 CrossRefGoogle Scholar
  41. Jordan TE, Kirk-Lawlor NE, Blanco NP, Rech JA, Cosentino NJ (2014) Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol Soc Am Bull 126(7–8):1016–1046.  https://doi.org/10.1130/B30978.1 CrossRefGoogle Scholar
  42. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61(16):3461–3475.  https://doi.org/10.1016/S0016-7037(97)00169-5 CrossRefGoogle Scholar
  43. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey, p 600Google Scholar
  44. Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem 80(1):287–293.  https://doi.org/10.1021/ac701716q CrossRefGoogle Scholar
  45. Marinovic N, Lahsen, A (1984) Carta Geológica de Chile 1:250,000 Hoja Calama, Servicio Nacional de Geología y Minería, Santiago de Chile, Chile, pp 1–150Google Scholar
  46. May G, Hartley AJ, Stuart FM, Chong G (1999) Tectonic signatures in arid continental basins: an example from the upper Miocene–Pleistocene, Calama Basin, Andean forearc, northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 151(1–3):55–77.  https://doi.org/10.1016/S0031-0182(99)00016-4 CrossRefGoogle Scholar
  47. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18(6):849–857.  https://doi.org/10.1063/1.1747785 CrossRefGoogle Scholar
  48. Miall AD (1996) The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology. Springer, BerlinGoogle Scholar
  49. Miall AD (2010) Alluvial deposits. In Dalrymple RW, James NP (eds) Facies Models 4. Geological Association of Canada, pp 105–137Google Scholar
  50. Milliken KL (1979) The silicified evaporite syndrome—two aspects of silicification of former evaporite nodules from southern Kentucky and northern Tennessee. J Sediment Petrol 49:245–256Google Scholar
  51. Milnes A, Thiry M (1992) Silcretes. In: Martini IP, Chesworth W (eds) Weathering, soils and Paleosols. Developments in earth surface processes 2. Elsevier, Amsterdam, pp 349–377.  https://doi.org/10.1016/B978-0-444-89198-3.50019-2 CrossRefGoogle Scholar
  52. Mora R, Artal J, Brockway H, Martinez E, Muhr R (2004) El Tesoro exotic copper deposit, Antofagasta Region, Northern Chile. In Sillitoe RH, Perelló J, Vidal CE (eds) Andean Metallogeny: New Discoveries, Concepts, and Update. Soc Econ Geol Spec Publ 11:187–197Google Scholar
  53. Mote TI, Becker TA, Renne P, Brimhall GH (2001) Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol 96(2):351–366.  https://doi.org/10.2113/gsecongeo.96.2.351 CrossRefGoogle Scholar
  54. Mpodozis C, Cornejo P (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. In Hedenquist JW, Harris M, Camus F (eds) Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Soc Econ Geol Spec Publ 16:329–360Google Scholar
  55. Mpodozis C, Marinovic C, Smoje I (1993) Estudio geológico estructural de la Cordillera de Domeyko entre Sierra Limón Verde y Sierra Mariposas Región de Antofagasta. Servicio Nacional de Geología y Minería, Santiago de Chile, Chile, IR 93–04Google Scholar
  56. Mpodozis C, Ramos V (1989) The Andes of Chile and Argentina. In Ericksen G, Cañas-Pinochet M, Reinemund J (eds) Geology of the Andes and its Relation to Hidrocarbon and Mineral Resources. Circumpacific Council for Energy and Mineral Resources Earth Sciences Series 11:59–90Google Scholar
  57. Münchmeyer C (1996) Exotic deposits: products of lateral migration of supergene solutions from porphyry copper deposits. In Camus F, Sillitoe RH, Petersen R (eds) Andean Copper Deposits: New Discoveries, Mineralization Styles and Metallogeny. Soc Econ Geol Spec Publ 5:43–58Google Scholar
  58. Nalpas T, Dabard MP, Ruffet G, Vernon A, Mpodozis C, Loi A, Hérail G (2008) Sedimentation and preservation of the Miocene Atacama gravels in the Pedernales–Chanaral area, northern Chile: climatic or tectonic control? Tectonophysics 459(1-4):161–173.  https://doi.org/10.1016/j.tecto.2007.10.013 CrossRefGoogle Scholar
  59. Nash DJ, Hopkinson L (2004) A reconnaissance laser Raman and Fourier transform infrared survey of silcretes from the Kalahari Desert, Botswana. Earth Surf Proc Land 29(12):1541–1558.  https://doi.org/10.1002/esp.1137 CrossRefGoogle Scholar
  60. Nash DJ, Ullyott JS (2007) Silcrete. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. U.K. Blackwell, Oxford, pp 95–148.  https://doi.org/10.1002/9780470712917.ch4 CrossRefGoogle Scholar
  61. Nelson M, Kyser K, Clark A, Oates C (2007) Carbon isotope evidence for microbial involvement in exotic copper silicate mineralization, Huinquintipa and Mina Sur, northern Chile. Econ Geol 102(7):1311–1320.  https://doi.org/10.2113/gsecongeo.102.7.1311 CrossRefGoogle Scholar
  62. Newberg DW (1967) Geochemical implications of chrysocolla-bearing alluvial gravels. Econ Geol 62(7):932–956.  https://doi.org/10.2113/gsecongeo.62.7.932 CrossRefGoogle Scholar
  63. Nichols G (2009) Sedimentology and Stratigraphy. John Wiley & SonsGoogle Scholar
  64. Oerter E, Amundson R, Heimsath A, Jungers M, Chong G, Renne P (2016) Early to middle Miocene climate in the Atacama Desert of northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 441:890–900.  https://doi.org/10.1016/j.palaeo.2015.10.038 CrossRefGoogle Scholar
  65. Parkhurst DL, Appelo CAJ (1999) User's guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations, US Geol Surv Rept WRI 99–4259Google Scholar
  66. Palacios C, Rouxel O, Reich M, Cameron EM, Leybourne MI (2011) Pleistocene recycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence. Mineral Deposita 46(1):1–7.  https://doi.org/10.1007/s00126-010-0315-6 CrossRefGoogle Scholar
  67. Perelló J, Brockway H, Martini R (2004) Discovery and geology of the Esperanza Cu-Au deposit, Antofagasta region, Northern Chile. In Sillitoe RH, Perelló J, Vidal CE (eds) Andean Metallogeny: New Discoveries, Concepts, and Update. Soc Econ Geol Spec Publ 11:167–186Google Scholar
  68. Perelló J, Muhr R, Mora R, Martinez E, Brockway H, Swaneck T, Artal J, Mpodozis C, Münchmeyer C, Clifford J, Acuña E, Valenzuela D, Argandoña R (2010) Wealth creation through exploration in a mature terrain: the case history of the Centinela District, northern Chile porphyry copper belt. In Goldfarb RJ, Marsh EE, Monecke T (eds) The challenge of finding new mineral resources: global metallogeny, innovative exploration, and new discoveries. Soc Econ Geol Spec Publ 15:229–252Google Scholar
  69. Pietras JT, Carrol AR (2006) High-resolution stratigraphy of an underfilled lake basin: Wilkins peak member, Eocene Green River formation, Wyoming, U.S.A. J Sediment Research 76(11):1197–1214.  https://doi.org/10.2110/jsr.2006.096 CrossRefGoogle Scholar
  70. Pincheira M, Dagnino A, Kelm U, Helle S (2003) “Copper pitch y copper wad”: Contraste entre las fases presentes en las cabezas y en los ripios en pruebas de lixiviación de materiales de Mina Sur, Chuquicamata. Abstr, X Congreso Geológico Chileno, ConcepciónGoogle Scholar
  71. Pinget MC, Dold B, Zentilli M, Fontboté L (2015) Reported supergene sphalerite rims at the Chuquicamata porphyry deposit (northern Chile) revisited: evidence for a hypogene origin. Econ Geol 110(1):253–262.  https://doi.org/10.2113/econgeo.110.1.253 CrossRefGoogle Scholar
  72. Pizarro H, Campos E, Rousse S, Riquelme R, González R, Fernández-Mort A (2016) Link between paleo-climatic conditions and sedimentary environment in the Atacama Desert (Northern Chile) as registered by the magnetic signatures of coarse-grained sediments matrixes. Abstr, 32nd IAS Meeting of Sedimentology, MarrakechGoogle Scholar
  73. Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34(9):761–764.  https://doi.org/10.1130/G22444.1 CrossRefGoogle Scholar
  74. Rech JA, Currie BS, Shullenberger ED, Dunagan SP, Jordan TE, Blanco N, Tomlinson AJ, Rowe HD, Houston J (2010) Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile. Earth Planet Sc Lett 292(3–4):371–382.  https://doi.org/10.1016/j.epsl.2010.02.004 CrossRefGoogle Scholar
  75. Reich M, Palacios C, Parada MA, Fehn U, Cameron EM, Leybourne MI, Zúñiga A (2008) Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36Cl data. Mineral Deposita 43(6):663–675.  https://doi.org/10.1007/s00126-008-0184-4 CrossRefGoogle Scholar
  76. Reich M, Palacios C, Vargas G, Luo S, Cameron EM, Leybourne MI, Parada MA, Zúñiga A, You C-F (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineral Deposita 44(5):497–504.  https://doi.org/10.1007/s00126-009-0229-3 CrossRefGoogle Scholar
  77. Riquelme R, Tapia M, Campos E, Mpodozis C, Carretier S, González R, Muñoz S, Fernández-Mort A, Sanchez C, Marquardt C (2017) Supergene and exotic Cu mineralization occur during periods of landscape stability in the Centinela Mining District, Atacama Desert. Basin Res.  https://doi.org/10.1111/bre.12258
  78. Roedder E (1968) The noncolloidal origin of “colloform” textures in sphalerite ores. Econ Geol 63(5):451–471.  https://doi.org/10.2113/gsecongeo.63.5.451 CrossRefGoogle Scholar
  79. Sáez A, Cabrera L, Jensen A, Chong G (1999) Late Neogene lacustrine record and palaeogeography in the Quillagua–Llamara basin, central Andean fore-arc (northern Chile). Palaeogeogr Palaeoclimatol Palaeoecol 151(1–3):5–37.  https://doi.org/10.1016/S0031-0182(99)00013-9 CrossRefGoogle Scholar
  80. Sáez A, Cabrera L, Garcés M, Bogaard P, Jenses A, Gimeno D (2012) The stratigraphic record of changing hyperaridity in the Atacama Desert over the last 10 Ma. Earth Planet Sci Lett 355:32–38CrossRefGoogle Scholar
  81. Sanz ME, Alonso-Zarza AM, Calvo JP (1995) Carbonate pond deposits related to semi-arid alluvial systems: examples from the tertiary Madrid Basin, Spain. Sedimentology 42(3):437–452.  https://doi.org/10.1111/j.1365-3091.1995.tb00383.x CrossRefGoogle Scholar
  82. Scheuber E, Reutter KJ (1992) Magmatic arc tectonics in the Central Andes between 21° and 25°. Tectonophysics 205(1–3):127–140.  https://doi.org/10.1016/0040-1951(92)90422-3 CrossRefGoogle Scholar
  83. Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. Econ Geol 100th Anniversary Volume 29:723–768Google Scholar
  84. Sillitoe RH (2012) Copper provinces. Soc Econ Geo Spec Publ 16:1–18Google Scholar
  85. Sillitoe RH, McKee EH (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ Geol 91(1):164–179.  https://doi.org/10.2113/gsecongeo.91.1.164 CrossRefGoogle Scholar
  86. Smoot JP (1983) Depositional subenvironments in an arid closed basin; Wilkins peak member of the Green River formation (Eocene), Wyoming, U.S.A. Sedimentology 30(6):801–827.  https://doi.org/10.1111/j.1365-3091.1983.tb00712.x CrossRefGoogle Scholar
  87. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279Google Scholar
  88. Thiry M, Millot G (1987) Mineralogical forms of silica and their sequence of formation in silcretes. J Sediment Petrol 57:343–352Google Scholar
  89. Thiry M, Milnes AR, Rayot V, Simon-Coincon R (2006) Interpretation of palaeoweathering features and successive silicifications in the tertiary regolith of inland Australia. J Geol Soc Lond 163(4):723–736.  https://doi.org/10.1144/0014-764905-020 CrossRefGoogle Scholar
  90. Velasco F, Herrero JM, Suárez S, Yusta I, Alvaro A, Tornos F (2013) Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geol Rev 53:181–203.  https://doi.org/10.1016/j.oregeorev.2013.01.008 CrossRefGoogle Scholar
  91. Wright VP (1986) The role of fungal biomineralization in the formation of early carboniferous soil fabrics. Sedimentology 33(6):831–838.  https://doi.org/10.1111/j.1365-3091.1986.tb00985.x CrossRefGoogle Scholar
  92. Yates DM, Joyce KJ, Heaney PJ (1998) Complexation of copper with polymeric silica in aqueous solution. Appl Geochem 13(2):235–241.  https://doi.org/10.1016/S0883-2927(97)00062-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • A. Fernández-Mort
    • 1
    • 2
  • R. Riquelme
    • 1
  • A. M. Alonso-Zarza
    • 2
    • 3
  • E. Campos
    • 1
  • T. Bissig
    • 4
    • 5
  • C. Mpodozis
    • 6
  • S. Carretier
    • 7
  • C. Herrera
    • 1
  • M. Tapia
    • 8
  • H. Pizarro
    • 1
    • 7
  • S. Muñoz
    • 1
  1. 1.Departamento de Ciencias GeológicasUniversidad Católica del NorteAntofagastaChile
  2. 2.Departamento de Petrología y Geoquímica, Fac. CC. GeológicasUniversidad Complutense de MadridMadridSpain
  3. 3.Instituto de Geociencias, UCM-CSICMadridSpain
  4. 4.Mineral Deposit Research Unit, Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  5. 5.Goldcorp Inc.VancouverCanada
  6. 6.Antofagasta MineralsSantiagoChile
  7. 7.GET, Université de Toulouse, IRD, CNRS, UPS, CNESToulouseFrance
  8. 8.Departamento de GeologíaUniversidad de AtacamaCopiapóChile

Personalised recommendations