Mineralium Deposita

, Volume 53, Issue 7, pp 947–966 | Cite as

A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

  • Paula A. RojasEmail author
  • Fernando Barra
  • Martin Reich
  • Artur Deditius
  • Adam Simon
  • Francisco Uribe
  • Rurik Romero
  • Mario Rojo


El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between − 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at ~ 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the formation of IOA deposits in the Chilean Iron Belt, where the magnetite mineralization was sourced from intermediate magmas during the first Andean stage. In contrast, the beginning of the second Andean stage is characterized by shallow subduction and a compressive regime, which is represented in the district by the emplacement of the Punta de Piedra granite-granodiorite batholith (100 Ma) and marks the end of iron oxide-apatite deposit formation in the area.


Iron oxide-apatite Sulfur stable isotopes Geochronology Northern Chile 



We acknowledge the reviewers Patrick Williams and Daniel Harlov for their constructive comments that greatly improve the manuscript. Bernd Lehmann is thanked for the editorial handling and for additional comments on the manuscript. We acknowledge the facilities and technical assistance of the Isotopic Geology Unit at the SERNAGEOMIN Laboratory Centre for Ar/Ar dating and Mathieu Leisen from CEGA for U-Pb dating. David Dettmann from the University of Arizona, Tucson, is thanked for the sulfur isotope analyses.

Funding information

This study was funded by FONDECYT grant no. 1140780 to FB. We thank for the additional support from the Millennium Science Initiative (MSI) through Millennium Nucleus for Metal Tracing along Subduction grant NC130065, and the Servicio Nacional de Geología y Minería (SERNAGEOMIN). We appreciate the support and help from the geology team at Compañía Minera del Pacífico (CMP).

Supplementary material

126_2017_777_MOESM1_ESM.pdf (68 kb)
ESM Table 1 (PDF 68 kb)
126_2017_777_MOESM2_ESM.pdf (61 kb)
ESM Table 2 (PDF 61 kb)
126_2017_777_MOESM3_ESM.pdf (78 kb)
ESM Table 3 (PDF 77 kb)
126_2017_777_MOESM4_ESM.pdf (64 kb)
ESM Table 4 (PDF 64 kb)
126_2017_777_MOESM5_ESM.pdf (50 kb)
ESM Table 5 (PDF 50 kb)


  1. Alva-Valdivia LM, Rivas-Sánchez ML, Goguitchaichvili A, Urrutia-Fucugauchi J, Gonzalez A, Vivallo W (2003) Integrated magnetic studies of the El Romeral iron-ore deposit, Chile: implications for ore genesis and modeling of magnetic anomalies. J Appl Geophys 53:137–151Google Scholar
  2. Barra F, Reich M, Selby D, Rojas P, Simon A, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG clan: a Re-Os isotope approach. Ore Geol Rev 81:62–78CrossRefGoogle Scholar
  3. Barton PB (1970) Sulfide Petrology. Mineral Soc Am Spec Pap 3:187–198Google Scholar
  4. Bernal NF, Gleeson SA, Smith MP, Barnes JD, Pan Y (2017) Evidence of multiple halogen sources in scapolites from iron oxide-copper-gold (IOCG) deposits and regional Na Cl metasomatic alteration, Norrbotten County, Sweden. Chem Geol 451:90–103Google Scholar
  5. Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016) Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Acta 177:94–104CrossRefGoogle Scholar
  6. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved Pb-206/U-218 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  7. Bookstrom A (1975) Magnetite deposits of El Romeral, Chile: physical geology, sequence of events, and processes of formation. PhD Dissertation, Stanford University, 417 pGoogle Scholar
  8. Bookstrom A (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72:1101–1130CrossRefGoogle Scholar
  9. Brown M, Díaz F, Grocott J (1993) Displacement history of the Atacama Fault System, 25°00′S 27°00′S, northern Chile. Geol Soc Am Bull 105:1165–1174CrossRefGoogle Scholar
  10. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357CrossRefGoogle Scholar
  11. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society, London, pp 21–114CrossRefGoogle Scholar
  12. Chen H, Clark AH, Kyser K, Ullrich TD, Baxter R, Chen Y, Moody TC (2010) Evolution of the giant Marcona-Mina Justa iron oxide-copper-gold district, South-Central Peru. Econ Geol 105:155–185CrossRefGoogle Scholar
  13. Chen H, Cooke DR, Baker MJ (2013) Mesozoic iron oxide copper-gold mineralization in the Central Andes and the Gondwana supercontinent breakup. Econ Geol 108:37–44CrossRefGoogle Scholar
  14. Childress TM, Simon AC, Day WC, Lundstrom CC, Bindeman IN (2016) Iron and oxygen isotope signatures of the pea ridge and pilot knob magnetite–apatite deposits, southeast Missouri, USA. Econ Geol 111:2033–2044CrossRefGoogle Scholar
  15. Coira B, Davidson C, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of nothern Argentina and Chile. Earth Sci Rev 18:303–332CrossRefGoogle Scholar
  16. Coleman ML, Moore MP (1978) Direct reduction of sulfates to sulfur dioxide for isotopic analysis. Anal Chem 50:1594–1598CrossRefGoogle Scholar
  17. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Miner Geochem 53:469–500CrossRefGoogle Scholar
  18. Czamanske GK, Force ER, Moore WJ (1981) Some geologic and potential resource aspects of rutile in porphyry copper deposits. Econ Geol 76:2240–2246Google Scholar
  19. Dahl PS (1996) The effects of composition on retentivity of Ar and O in hornblende and related amphiboles: a field-tested empirical model. Geochim Cosmochim Acta 60:3687–3700CrossRefGoogle Scholar
  20. Day WC, Slack JF, Ayuso RA, Seeger CM (2016) Regional geologic and petrologic framework for iron oxide ± apatite ± rare earth element and iron oxide copper-gold deposits of the Mesoproterozoic St. Francois Mountains terrane, southeast Missouri, USA. Econ Geol 111:1825–1858CrossRefGoogle Scholar
  21. Edmonds M, Mather TA (2017) Volcanic sulfides and outgassing. Elements 13:105–110CrossRefGoogle Scholar
  22. Emparan C, Pineda G (2000) Area La Serena-La Higuera, Región de Coquimbo. Servicio Nacional de Geología y Minería. Mapas Geológicos, no.18, 1 mapa escala 1:100.000, SantiagoGoogle Scholar
  23. Emparan C, Pineda G (2005) Geología del Área Andacollo-Puerto Aldea, Región de Coquimbo. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Geología Básica, no. 96, 1:1000.000, SantiagoGoogle Scholar
  24. Espinoza L (2000) Estudio petrográfico del cuerpo Cerro Principal del distrito ferrífero El Romeral IV región- La Serena, Chile. Honors thesis, Universidad de Chile, Santiago, ChileGoogle Scholar
  25. Ewart A (1982) The mineralogy and petrology of tertiary-recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Thorpe RS (ed) Andesites, orogenic andesites, and related rocks. Wiley, New York, pp 26–95Google Scholar
  26. Fredes MJ (2017) Geología del prospecto IOCG Alcaparra, Comuna de Huasco, Región de Atacama. Honors thesis, Universidad de Chile, Santiago, ChileGoogle Scholar
  27. Frietsch R, Tuisku P, Martinsson O, Perdahl J (1997) Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34CrossRefGoogle Scholar
  28. Frutos J, Oyarzún J (1975) Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile. Econ Geol 70:988–990CrossRefGoogle Scholar
  29. Henríquez F (1991) Internal report FONDECYT 89-0759. CONICYT, SantiagoGoogle Scholar
  30. Hezarkhani A, Williams-Jones AE, Gammons CH (1999) Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineral Deposita 34:770–783CrossRefGoogle Scholar
  31. Jaillard E, Soler P, Carlier G, Mourier T (1990) Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. J Geol Soc 147:1009–1022CrossRefGoogle Scholar
  32. Johnson ER, Wallace PJ, Cashman KV, Granados HD (2010) Degassing of volatiles (H2O, CO2, S, Cl) during ascent, crystallization and eruption at mafic monogenetic volcanoes in Central Mexico. J Volcanol Geotherm Res 197:225–238CrossRefGoogle Scholar
  33. Jugo PJ, Candela PA, Piccoli PM (1999) Magmatic sulfides and Au/Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at 850°C, 100 MPa in haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos 46:573–589CrossRefGoogle Scholar
  34. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594CrossRefGoogle Scholar
  35. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38CrossRefGoogle Scholar
  36. Koppers AAP (2002) ArArCALC-software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619CrossRefGoogle Scholar
  37. Kullerud G, Yoder HS (1959) Pyrite stability relations in the Fe-S system. Econ Geol 54:533–572CrossRefGoogle Scholar
  38. Letelier M (1977) Petrología y ambiente de depositación y estructura de las Formaciones matahuaico, Las Breas, Tres Cruces sensu lato e intrusivos permotriásicos en el área de Rivadavia-Alcohuás, valle de Elqui, IV Región, Chile. Honors thesis, Universidad de Chile, Santiago, ChileGoogle Scholar
  39. Loyola N (2016) Origen de la mineralización y alteración hidrotermal del depósito tipo IOCG Diego de Almagro, III Región de Atacama, Chile. Honors thesis, Universidad de Chile, Santiago, Chile, 41–42Google Scholar
  40. Ludwig K (2010) Isoplot/Ex version 4.1, a geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Spec Publ 4Google Scholar
  41. Maksaev V (1990) Metallogeny, geological evolution and thermochronology of the Chilean Andean between latitudes 21° and 26° south, and the origin of the major porphyry copper deposits. PhD Dissertation, Dalhousie University, Halifax, Nova Scotia, CanadaGoogle Scholar
  42. Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide Cu-Au(-Zn-Ag) deposits, Chile. Econ Geol 96:1799–1826Google Scholar
  43. Ménard JJ (1995) Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile). Mineral Deposita 30:268–274CrossRefGoogle Scholar
  44. Mora CI, Vally JW (1989) Halogen-rich scapolite and biotite: implications for metamorphic fluid-rock interaction. Am Mineral 74:721–737Google Scholar
  45. Morata D, Aguirre L (2003) Extensional Lower Cretaceous volcanism in the coastal range (29°20′-30°S), Chile: geochemistry and petrogenesis. J S Am Earth Sci 16:459–476CrossRefGoogle Scholar
  46. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32CrossRefGoogle Scholar
  47. Naslund HR, Henríquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralisation examples from the Chilean high Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 2. PGC, Adelaide, pp 207–226Google Scholar
  48. Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in chile and ore textures and magnetite geochemistry. Econ Geol 89:820–839CrossRefGoogle Scholar
  49. Oyarzún R, Oyarzún J, Ménard JJ, Lillo J (2003) The Cretaceous iron belt of northern Chile: role of oceanic plates, a superplume event, and a major shear zone. Mineral Deposita 38:640–646CrossRefGoogle Scholar
  50. Pankratz LB, King EG (1970) High-temperature enthalpies and entropies of chalcopyrite and bornite. US Bureau of Mines. Rep Investig 7435:1–10Google Scholar
  51. Parak T (1975) Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. Econ Geol 70:1242–1258CrossRefGoogle Scholar
  52. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  53. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  54. Purtov VK, KoteVnikova AL (1993) Solubility of titanium in chloride and fluoride hydrothermal solutions. Int Geol Rev 35:279–287CrossRefGoogle Scholar
  55. Rabbia OM, Hernández LB, French DH, King RW, Ayers JC (2009) The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective. Mineral Deposita 44:849–866Google Scholar
  56. Reed M (1997) Hydrothermal alteration and its relationship to ore fluid composition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 303–365Google Scholar
  57. Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP, Munizaga R (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper-gold systems? Econ Geol 111:743–761CrossRefGoogle Scholar
  58. Rhodes AL, Oreskes N, Sheets S (1999) Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. In: Brian JS (ed) Geology and ore deposits of the Central Andes. SEG Spec Publ 7, pp 299–332Google Scholar
  59. Rieger AA, Marschik R, Díaz M, Hölzl S, Charadia M, Akker B, Spangenberg JE (2010) The hypogene iron oxide copper-gold mineralization in the Mantoverde district, northern Chile. Econ Geol 105:1271–1299CrossRefGoogle Scholar
  60. Rojas PA (2017) Genesis of the El Romeral iron ore: new contributions to the understanding of iron oxide-apatite deposits. MSc thesis, Universidad de Chile, Santiago, Chile, pp 160Google Scholar
  61. Salazar E (2017) Geoquímica de magnetitas como indicador petrogenético del depósito Cerro Negro Norte, Copiapó, Chile. MSc thesis, Universidad de Chile, Santiago, ChileGoogle Scholar
  62. Scheuber E (1994) Tektonische Entwicklung des nordchilenischen aktiven Kontinentalrandes: Der Einfluss von Plattenkonvergenz und Rheologie. Geoteckt Forsch 81:1–131Google Scholar
  63. Scheuber E, Andriessen PAM (1990) The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J Struct Geol 12:243–257CrossRefGoogle Scholar
  64. Scott KM (2005) Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia. Geochem Explor Environ Anal 5:247–253Google Scholar
  65. Seedorff E, Dilles JH, Proffett Jr JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Baton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. In: Econ Geol 100th Anniv Vol, p. 251–298Google Scholar
  66. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812CrossRefGoogle Scholar
  67. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41CrossRefGoogle Scholar
  68. Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109Google Scholar
  69. Sláma J, Košler J, Condon D, Crowley J, Gerdes A, Hanchar J, Horstwood M, Morris G, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M, Whitehouse M (2008) Plešovice zircon: a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  70. Sundius N (1915) Beiträge zur Geologie des siidlichen Teils des Kirunagebiets. Vetensk Prakt Unders Lappl, pp 1–237Google Scholar
  71. Tanis EA, Simon AC, Zhang Y, Chow P, Xiao Y, Hanchar JM, Tschauner O, Shen G (2016) Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250-650°C. Geochim Cosmochim Acta 177:170–181CrossRefGoogle Scholar
  72. Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, CambridgeGoogle Scholar
  73. Villa IM, Puxeddu M (1994) Geochronology of the Larderello geothermal field: new data and the ‘closure temperature’ issue. Contrib Miner Petrol 115:415–426CrossRefGoogle Scholar
  74. Villa IM, Grobéty B, Kelley SP, Trigila R, Wieler R (1996) Assessing Ar transport paths and mechanisms for McClure Mountains hornblende. Contrib Miner Petrol 126:67–80CrossRefGoogle Scholar
  75. Williams S, Cesbron F (1977) Rutile and apatite: useful prospecting guides for porphyry copper deposits. Mineral Mag 41:288–292Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paula A. Rojas
    • 1
    Email author
  • Fernando Barra
    • 2
  • Martin Reich
    • 2
  • Artur Deditius
    • 3
  • Adam Simon
    • 4
  • Francisco Uribe
    • 5
  • Rurik Romero
    • 2
  • Mario Rojo
    • 6
  1. 1.Department of GeologyUniversidad de ChileSantiagoChile
  2. 2.Department of Geology and Andean Geothermal Center of Excellence (CEGA)Universidad de ChileSantiagoChile
  3. 3.School of Engineering and Information TechnologyMurdoch UniversityMurdochAustralia
  4. 4.Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA
  5. 5.Servicio Nacional de Geología y Minería (SERNAGEOMIN)SantiagoChile
  6. 6.Compañia Minera del Pacífico (CAP)La SerenaChile

Personalised recommendations