Advertisement

Mineralium Deposita

, Volume 54, Issue 2, pp 175–192 | Cite as

Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite

  • Matthias E. BauerEmail author
  • Thomas Seifert
  • Mathias Burisch
  • Joachim Krause
  • Nancy Richter
  • Jens Gutzmer
Article

Abstract

At the Hämmerlein skarn deposit, located in the western Erzgebirge (Germany), a major cassiterite-dominated Sn mineralization stage is spatially associated with a younger Zn-Cu-In sulfide mineralization stage. In this contribution, we provide the first detailed description of the Zn-Cu-In sulfide mineralization stage, based on field geological observations combined with detailed petrographic studies and electron probe microanalysis data. Indium-rich sulfide mineralization occurs as irregular, semi-massive lenses or as infill of short, discontinuous veinlets that crosscut the cassiterite-bearing skarn assemblage. Indium- and Cu-rich sphalerite and roquesite are found to be closely associated with In-bearing chalcopyrite. The highest In concentrations in sphalerite occur at the rims and along cracks of sphalerite grains. The distribution resembles diffusion profiles, suggesting that the In enrichment is due to an hydrothermal overprint that postdates the initial formation of both sphalerite and chalcopyrite. Textural relations illustrate that the diffusion fronts in sphalerite grains are thicker where they are in contact to anhedral masses of hematite and magnetite. Our observations suggest that In enrichment in sphalerite at the Hämmerlein skarn deposit is due to the decomposition of In-bearing chalcopyrite. The resultant release of Fe led to the formation of hematite and magnetite, whereas Cu and In were incorporated into sphalerite along grain boundaries and micro fractures. Incorporation into the sphalerite lattice took place by coupled substitution of Cu+ + In3+ ↔ 2Zn2+, suggesting that the concurrent availability of Cu and In may be an essential factor to enrich In in sphalerite in hydrothermal ore-forming environments.

Keywords

Indium Sphalerite Chalcopyrite Roquesite Diffusion Skarn 

Notes

Acknowledgments

We would like to thank Nigel Cook and Erik Jonsson for their constructive comments that improved a former version of this manuscript significantly. H. Albert Gilg and Bernd Lehmann are thanked for the editorial handling. We sincerely thank Marco Roscher and Lars Starke (Saxore Bergbau GmbH) for the support with the sample collection; Frank Weißflog and the Besucherbergwerk Zinnkammern Pöhla e. V. for access to the underground mine; Max Frenzel, Tom Járóka, and Reinhard Kleeberg for insightful discussions; and Andreas Bartzsch, Roland Würkert, and Michael Stoll for sample preparation. The geographic map of Germany is based on data generated with generic mapping tools, GMT 5 (https://www.soest.hawaii.edu/gmt/).

Funding information

This work was funded by the Biohydrometallurgical Center for Strategic Elements (BHMZ) of the Dr. Erich-Krüger-Foundation, Technische Universität Bergakademie Freiberg.

Supplementary material

126_2017_773_MOESM1_ESM.xlsx (145 kb)
ESM 1 (XLSX 145 kb).
126_2017_773_Fig10_ESM.gif (748 kb)
ESM 2

EPMA element distribution maps of a large sphalerite IIc grain (Sp IIc) that is surrounded by chalcopyrite (Ccp) and Fe oxides (magnetite and hematite); resolution 1 pixel ≙ 3 µm. a Zn EDS signal with position of a high resolution beam scan (2-6_10b Map 3-a) in e–g. b Fe Kα X-ray signal. c In Lα X-ray signal. d Cu Kα X-ray signal. e Cu Lα X-ray signal, resolution 1 pixel ≙ 170 nm. f In Lα X-ray signal. g Fe Lα X-ray signal (GIF 748 kb).

126_2017_773_MOESM2_ESM.tif (4.3 mb)
High Resolution Image (TIFF 4.25 MB).

References

  1. Armstrong JT, McSwiggen P, Nielsen C (2013) A thermal field-emission electron probe microanalyzer for improved analytical spatial resolution. Microsc Anal 27(7):18–22Google Scholar
  2. Bachmann K, Frenzel M, Krause J, Gutzmer J (2017) Advanced identification and quantification of in-bearing minerals by scanning electron microscope-based image analysis. Microsc Microanal:1–11.  https://doi.org/10.1017/S1431927617000460
  3. Baker T, van Achterberg E, Ryan CG, Lang JR (2004) Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2):117.  https://doi.org/10.1130/G19950.1 Google Scholar
  4. Barton PB Jr, Bethke PM (1987) Chalcopyrite disease in sphalerite: pathology and epidemiology. Am Mineral 72(5–6):451–467Google Scholar
  5. Baumann H, Mathes R, Jefimow W, Schubert E (1975) Geologischer Grundriß Stollensohle der Lagerstätte Hämmerlein–Tellerhäuser 1:10000. SDAG WismutGoogle Scholar
  6. Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke im Georg Thieme Verlag. New York, StuttgartGoogle Scholar
  7. Bente K, Doering T (1993) Solid-state diffusion in sphalerites; an experimental verification of the “chalcopyrite disease”. Eur J Mineral 5(3):465–478Google Scholar
  8. Bente K, Doering T (1995) Experimental studies on the solid state diffusion of Cu + In in ZnS and on “disease”, DIS (diffusion induced segregations), in sphalerite and their geological applications. Mineral Petrol 53(4):285–305.  https://doi.org/10.1007/BF01160153 Google Scholar
  9. Buckley AN, Skinner WM, Harmer SL, Pring A, Lamb RN, Fan L-J, Yang Y-w (2007) Examination of the proposition that u(II) can be required for charge neutrality in a sulfide lattice—Cu in tetrahedrites and sphalerite. Can J Chem 85(10):767–781Google Scholar
  10. Burke EAJ, Kieft C (1980) Roquesite and Cu-In-bearing sphalerite from Långban, Bergslagen, Sweden. Can Mineral 18(3):361–363Google Scholar
  11. Cherniak DJ (2010) Diffusion in carbonates, fluorite, sulfide minerals, and diamond. Rev Mineral Geochem 72(1):871.  https://doi.org/10.2138/rmg.2010.72.19 Google Scholar
  12. Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky LV, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73(16):4761–4791.  https://doi.org/10.1016/j.gca.2009.05.045 Google Scholar
  13. Cook NJ, Ciobanu CL, Williams T (2011a) The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy 108(3–4):226–228.  https://doi.org/10.1016/j.hydromet.2011.04.003 Google Scholar
  14. Cook NJ, Sundblad K, Valkama M, Nygård R, Ciobanu CL, Danyushevsky LV (2011b) Indium mineralisation in A-type granites in southeastern Finland: insights into mineralogy and partitioning between coexisting minerals. Chem Geol 284(1–2):62–73.  https://doi.org/10.1016/j.chemgeo.2011.02.006 Google Scholar
  15. Cook NJ, Ciobanu CL, Brugger J, Etschmann B, Howard DL, de Jonge MD, Ryan C, Paterson D (2012) Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am Mineral 97(2–3):476–479.  https://doi.org/10.2138/am.2012.4042 Google Scholar
  16. Dill HG, Garrido MM, Melcher F, Gomez MC, Weber B, Luna LI, Bahr A (2013) Sulfidic and non-sulfidic indium mineralization of the epithermal Au–Cu–Zn–Pb–Ag deposit San Roque (Provincia Rio Negro, SE Argentina)—with special reference to the “indium window” in zinc sulfide. Ore Geol Rev 51:103–128.  https://doi.org/10.1016/j.oregeorev.2012.12.005 Google Scholar
  17. EU Commission (2014) Critical raw materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials, BruesselsGoogle Scholar
  18. Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84(1–4):310–320Google Scholar
  19. Förster H, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, StuttgartGoogle Scholar
  20. Förster H, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40(11):1613–1645.  https://doi.org/10.1093/petroj/40.11.1613 Google Scholar
  21. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond, Spec Publ 179(1):35–61.  https://doi.org/10.1144/GSL.SP.2000.179.01.05 Google Scholar
  22. Frenzel M (2016) The distribution of gallium, germanium and indium in conventional and non-conventional resources—implications for global availability. Thesis, TU Bergakademie FreibergGoogle Scholar
  23. Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol Rev 76:52–78.  https://doi.org/10.1016/j.oregeorev.2015.12.017 Google Scholar
  24. Frenzel M, Mikolajczak C, Reuter MA, Gutzmer J (2017) Quantifying the relative availability of high-tech by-product metals—the cases of gallium, germanium and indium. Resour Policy 52:327–335.  https://doi.org/10.1016/j.resourpol.2017.04.008 Google Scholar
  25. Goh SW, Buckley AN, Lamb RN, Rosenberg RA, Moran D (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim Cosmochim Acta 70(9):2210–2228.  https://doi.org/10.1016/j.gca.2006.02.007 Google Scholar
  26. Hösel G (2003) Die polymetallische Skarnlagerstätte Pöhla-Globenstein, Bergbaumonographie. Bergbau in Sachsen, vol 8, FreibergGoogle Scholar
  27. Johan Z (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineral Petrol 39(3–4):211–229.  https://doi.org/10.1007/BF01163036 Google Scholar
  28. Jonsson E, Hogdahl K, Majka J, Lindeberg T (2013) Roquesite and associated indium-bearing sulfides from a Paleoproterozoic carbonate-hosted mineralization: Lindbom’s prospect, Bergslagen, Sweden. Can Mineral 51(4):629–641.  https://doi.org/10.3749/canmin.51.4.629 Google Scholar
  29. Kästner J (2016) Detailed investigations of skarn lithologies and tin mineralisation of the Hämmerlein seam (+590 m level) in the Pöhla-Tellerhäuser ore district (Erzgebirge, Germany). Master Thesis, TU Bergakademie FreibergGoogle Scholar
  30. Kern M, Möckel R, Krause J, Teichmann J, Gutzmer J (2017) Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy. Miner Eng.  https://doi.org/10.1016/j.mineng.2017.06.006
  31. Kieft K, Damman AH (1990) Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, west Bergslagen, Central Sweden. Mineral Mag 54:109–112Google Scholar
  32. Kissin SA, Owens DAR (1989) The relatives of stannite in the light of new data. Can Mineral 27(4):673–688Google Scholar
  33. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamtes 1:1–39Google Scholar
  34. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24(1):298–329.  https://doi.org/10.1016/j.gr.2013.03.001 Google Scholar
  35. Kröner A, Willner PA (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132(1):1–20.  https://doi.org/10.1007/s004100050401 Google Scholar
  36. Leonhardt D (1999) Geologische Karte des Freistaates Sachsen 1:25000, Blatt 5543 Kurort Oberwiesenthal. Sächsisches Landesamt für Umwelt und Geologie, DresdenGoogle Scholar
  37. Leonhardt D (2009) Geologische Karte des Freistaates Sachsen 1:25000, Blatt 5442 Aue. Sächsisches Landesamt für Umwelt und Geologie, DresdenGoogle Scholar
  38. Leutwein F (1943) Vorkommen und Gewinnung von Indium. Forschungslaboratorium des Bergreviers Freiberg (Sächsisches Staatsarchiv, Bergarchiv Freiberg, 40030 Oberbergamt (neu) - staatliche Lagerstättenforschungsstelle, Nr. 1–0261), Freiberg, GermanyGoogle Scholar
  39. Li Y, Kawashima N, Li J, Chandra AP, Gerson AR (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interf Sci 197–198:1–32.  https://doi.org/10.1016/j.cis.2013.03.004 Google Scholar
  40. Márquez-Zavalía MF, Galliski MÁ, Drábek M, Vymazalová A, Watanabe Y, Murakami H, Bernhardt H (2014) Ishiharaite, (Cu,Ga,Fe,In,Zn)S, a new mineral from the Capillitas Mine, northwestern Argentina. Can Mineral.  https://doi.org/10.3749/canmin.1400064
  41. Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196(3):309–337.  https://doi.org/10.1016/0040-1951(91)90328-P Google Scholar
  42. Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Economic Geology 100th Anniversary Volume, 299–336Google Scholar
  43. Murakami H, Ishihara S (2013) Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243.  https://doi.org/10.1016/j.oregeorev.2013.01.010 Google Scholar
  44. Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17(2–3):194–222.  https://doi.org/10.1016/j.gr.2009.08.001 Google Scholar
  45. Nickel EH (1992) Solid solutions in mineral nomenclature. Mineral Petrol 46(1):49–53.  https://doi.org/10.1007/BF01160701 Google Scholar
  46. Ohta E (1989) Occurrence and chemistry of indium-containing minerals from the Toyoha Mine, Hokkaido, Japan. Min Geol 39(218):355–372Google Scholar
  47. Osbahr I, Krause J, Bachmann K, Gutzmer J (2015) Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations. Microsc Microanal 21(5):1080–1095.  https://doi.org/10.1017/S1431927615000719 Google Scholar
  48. Pattrick RAD, Dorling M, Polya DA (1993) TEM study of indium- and copper-bearing growth-banded sphalerite. Can Mineral 31(1):105–117Google Scholar
  49. Pattrick RAD, Mosselmans JFW, Charnock JM (1998) An X-ray absorption study of doped sphalerites. Eur J Mineral 10(2):239Google Scholar
  50. Pavlova GG, Palessky SV, Borisenko AS, Vladimirov AG, Seifert T, Phan LA (2015) Indium in cassiterite and ores of tin deposits. Ore Geol Rev 66:99–113.  https://doi.org/10.1016/j.oregeorev.2014.10.009 Google Scholar
  51. Pearce CI, Pattrick R, Vaughan DJ, Henderson C, van der Laan G (2006) Copper oxidation state in chalcopyrite: mixed Cu d9 and d10 characteristics. Geochim Cosmochim Acta 70(18):4635–4642.  https://doi.org/10.1016/j.gca.2006.05.017 Google Scholar
  52. von Quadt A, Günther D (1999) Evolution of Cambrian eclogitic rocks in the Erzgebirge: a conventional and LA-ICP-MS U-Pb zircon and Sm-Nd study. Terra Nostra 99(1):164Google Scholar
  53. Reich F, Richter T (1863) Ueber das Indium. J Prakt Chem 90(1):172–176.  https://doi.org/10.1002/prac.18630900122 Google Scholar
  54. Rötzler K, Plessen B (2010) The Erzgebirge: a pile of ultrahigh- to low-pressure nappes of Early Palaeozoic rocks and their Cadomian basement. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen, Schweizbart, Stuttgart, pp 253–270Google Scholar
  55. Schmädicke E, Evans WB (1997) Garnet-bearing ultramafic rocks from the Erzgebirge, and their relation to other settings in the Bohemian Massif. Contrib Mineral Petrol 127(1):57–74.  https://doi.org/10.1007/s004100050265 Google Scholar
  56. Schorr S, Wagner G (2005) Structure and phase relations of the Zn2x(CuIn)1−xS2 solid solution series. J Alloys Compd 396(1–2):202–207.  https://doi.org/10.1016/j.jallcom.2004.12.018 Google Scholar
  57. Schuppan W, Hiller A (2012) Die Komplexlagerstätten Tellerhäuser und Hämmerlein: Uranbergbau und Zinnerkundung in der Grube Pöhla der SDAG Wismut. Bergbau in Sachsen, Band 17, FreibergGoogle Scholar
  58. Schwarz-Schampera U (2014) Indium. In: Gunn G (ed) Critical metals handbook. Wiley, Hoboken, pp 204–229Google Scholar
  59. Schwarz-Schampera U, Herzig PM (2000) Indium: geology, mineralogy and economics. Springer-Verlag, BerlinGoogle Scholar
  60. Seifert T (2008) Metallogeny and petrogenesis of lampophyres in the mid-European Variscides: post-Collosional magmatism and its relationship to late-Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press, RotterdamGoogle Scholar
  61. Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28(1):1–31.  https://doi.org/10.1016/j.oregeorev.2005.04.005 Google Scholar
  62. Seward TM, Henderson CMB, Charnock JM (2000) Indium(III) chloride complexing and solvation in hydrothermal solutions to 350°C: an EXAFS study. Chem Geol 167(1–2):117–127.  https://doi.org/10.1016/S0009-2541(99)00204-1 Google Scholar
  63. Shimizu T, Morishita Y (2012) Petrography, chemistry, and near-infrared microthermometry of indium-bearing sphalerite from the Toyoha polymetallic deposit, Japan. Econ Geol 107(4):723–735.  https://doi.org/10.2113/econgeo.107.4.723 Google Scholar
  64. Shimizu M, Kato A, Shiozawa T (1986) Sakuraiite; chemical composition and extent of (Zn, Fe)In-for-CuSn substitution. Can Mineral 24(2):405–409Google Scholar
  65. Sinclair WD, Kooiman GJA, Martin DA, Kjarsgaard IM (2006) Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol Rev 28(1):123–145.  https://doi.org/10.1016/j.oregeorev.2003.03.001 Google Scholar
  66. Tichomirowa M, Leonhardt D (2010) New age determinations (Pb/Pb zircon evaporation, Rb/Sr) on the granites from Aue-Schwarzenberg and Eibenstock, western Erzgebirge, Germany. Z Geol Wiss 38(2–3):99–123Google Scholar
  67. Treliver Minerals Ltd (2015a) Tellerhäuser Project resource statement: press release from 13th March 2015. http://www.anglosaxony.com/assets/file/Press%20Release%20Mar%202015.pdf. Accessed 30 May 2016
  68. Treliver Minerals Ltd (2015b) Westerzgebirge project Hammerlein-Tellerhauser: long Section through Adit. http://www.anglosaxony.com/projects/germany/tellerhauser. Accessed 30 May 2016
  69. Valkama M, Sundblad K, Cook NJ, Ivashchenko VI (2016) Geochemistry and petrology of the indium-bearing polymetallic skarn ores at Pitkäranta, Ladoga Karelia, Russia. Mineral Deposita 51(6):823–839.  https://doi.org/10.1007/s00126-016-0641-4 Google Scholar
  70. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28(1):57–102.  https://doi.org/10.1016/j.oregeorev.2003.06.002 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Matthias E. Bauer
    • 1
    Email author
  • Thomas Seifert
    • 1
  • Mathias Burisch
    • 1
  • Joachim Krause
    • 2
  • Nancy Richter
    • 1
  • Jens Gutzmer
    • 1
    • 2
  1. 1.Institute of MineralogyTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfHelmholtz Institute Freiberg for Resource TechnologyFreibergGermany

Personalised recommendations