Advertisement

Mineralium Deposita

, Volume 53, Issue 5, pp 601–628 | Cite as

Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation

  • C. BallouardEmail author
  • M. Poujol
  • J. Mercadier
  • E. Deloule
  • P. Boulvais
  • J. M. Baele
  • M. Cuney
  • M. Cathelineau
Article

Abstract

In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 < U < 9 ppm; Th/U > 3), the leucogranite samples are characterized by highly variable U contents (~ 3 to 27 ppm) and Th/U ratios (~ 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.

Keywords

Uranium deposits Syntectonic granites Apatite geochemistry and U-Pb dating Fluid-rock interactions Hercynian South Armorican shear zone 

Notes

Acknowledgements

We want to thank AREVA (in particular D. Virlogeux, J.M. Vergeau, and P.C. Guiollard) for providing uranium oxide samples, historical reports, and data and for fruitful discussions. We are grateful to Y. Lepagnot (Geosciences, Rennes) for crushing the samples. Many thanks to J. Langlade (IFREMER, Brest), O. Rouer, S. Matthieu, and L. Salsi (SCMEM - Géoressources, Nancy) for their technical supports during EPMA and SEM analyses. Thank you to N. Bouden (CRPG, Nancy) for the help during SIMS analyses. J.M., M.C., and M.C. would also like to thank AREVA for the permission to publish the present manuscript. This manuscript benefited from the comments of R. Shail and an anonymous reviewer. We want to thank R.L. Romer and G. Beaudoin for editorial handling.

Funding information

This study was supported by 2012–2013 NEEDS-CNRS and 2015-CESSUR-INSU (CNRS) research grants attributed to M. Poujol.

Supplementary material

126_2017_761_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)
126_2017_761_MOESM2_ESM.xlsx (57 kb)
ESM 2 (XLSX 56 kb)
126_2017_761_MOESM3_ESM.docx (15 kb)
ESM 3 (DOCX 14 kb)
126_2017_761_MOESM4_ESM.xlsx (128 kb)
ESM 4 (XLSX 127 kb)

References

  1. Alabosi M (1984) Les altérations hydrothermales associées aux gisements d'uranium de Ty Gallen, Poulprio et Prat Mérien (massif de Pontivy, Morbihan, France). Dissertation, INPL (Institut National Polytechnique de Lorraine), NancyGoogle Scholar
  2. Ballèvre M (2016) Une histoire géologique du Massif armoricain. Géochronique 140Google Scholar
  3. Ballèvre M, Martínez Catalán JR, López-Carmona A, Pitra P, Abati J, Díez Fernández R, Ducassou C, Arenas R, Bosse V, Castiñeiras P, Fernández-Suárez J, Gómez Barreiro J, Paquette JL, Peucat JJ, Poujol M, Ruffet G, Sánchez Martínez S (2014) Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project. Geol Soc Lond Spec Publ 405:77–113.  https://doi.org/10.1144/SP405.13 CrossRefGoogle Scholar
  4. Ballèvre M, Bosse V, Dabard MP, Ducassou C, Fourcade S, Paquette JL, Peucat JJ, Pitra P (2013) Histoire Géologique du massif Armoricain: Actualité de la recherche. Bull Soc Geol Mineral Bretagne (D) 10-11:5–96Google Scholar
  5. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341:174–201.  https://doi.org/10.1016/j.crte.2008.11.009 CrossRefGoogle Scholar
  6. Ballouard C (2016) Origine, évolution et exhumation des leucogranites peralumineux de la chaîne hercynienne armoricaine: implication sur la métallogénie de l’uranium, Dissertation, Université de Rennes 1. tel.archives-ouvertes.fr/tel-01434903/Google Scholar
  7. Ballouard C, Poujol M, Boulvais P, Zeh A (2017b) Crustal recycling and juvenile addition during lithospheric wrenching: the Pontivy-Rostrenen magmatic complex, Armorican Massif (France), Variscan belt. Gondwana Res 49:222–247.  https://doi.org/10.1016/j.gr.2017.06.002 CrossRefGoogle Scholar
  8. Ballouard C, Poujol M, Boulvais P, Mercadier J, Tartèse R, Venneman T, Deloule E, Jolivet M, Kéré I, Cathelineau M, Cuney M (2017a) Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: the uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France). Ore Geol Rev 80:309–331.  https://doi.org/10.1016/j.oregeorev.2016.06.034 CrossRefGoogle Scholar
  9. Ballouard C, Boulvais P, Poujol M, Gapais D, Yamato P, Tartèse R, Cuney M (2015) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220–223:1–22.  https://doi.org/10.1016/j.lithos.2015.01.027 CrossRefGoogle Scholar
  10. Béchennec F, Thiéblemont D, Audru JC (2006) Plouay 348, Carte Géologique de France 1:50 000. BRGMGoogle Scholar
  11. Béchennec F, Thiéblemont D (2011) Bubry 349, Carte Géologique de France 1:50 000. BRGMGoogle Scholar
  12. Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42.  https://doi.org/10.1016/0191-8141(79)90019-1 CrossRefGoogle Scholar
  13. Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Rémond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and Zircon. In: Pagel M, Barbin V, Blanc, P, Ohnenstetter D (eds) Cathodoluminescence in geosciences, Springer, Heidelberg, pp 127–160CrossRefGoogle Scholar
  14. Bos P, Castaing C, Clément JP, Chantraine J, Lemeille F (1997) Rostrenen 312, Carte Géologique de France 1:50 000. BRGMGoogle Scholar
  15. Bosse V, Féraud G, Ballèvre M, Peucat JJ, Corsini M (2005) Rb–Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): implications for closure mechanisms in isotopic systems. Chem Geol 220:21–45.  https://doi.org/10.1016/j.chemgeo.2005.02.019 CrossRefGoogle Scholar
  16. Brown M (2010) The spatial and temporal patterning of the deep crust and implications for the process of melt extraction. Philos T Roy Soc A 368:11–51CrossRefGoogle Scholar
  17. Brun JP, Guennoc P, Truffert C, Vairon J (2001) Cadomian tectonics in northern Brittany: a contribution of 3-D crustal-scale modelling. Tectonophysics 331:229–246.  https://doi.org/10.1016/S0040-1951(00)00244-4 CrossRefGoogle Scholar
  18. Capdevila R (2010) Les granites varisques du Massif Armoricain. Bull Soc Geol Mineral Bretagne 7:1–52Google Scholar
  19. Cao S, Neubauer F (2016) Deep crustal expressions of exhumed strike-slip fault systems: shear zone initiation on rheological boundaries. Earth-Sci Rev 162:155–176.  https://doi.org/10.1016/j.earscirev.2016.09.010 CrossRefGoogle Scholar
  20. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newslett 25:187–198.  https://doi.org/10.1111/j.1751-908X.2001.tb00595.x CrossRefGoogle Scholar
  21. Caroff M, Bellon H, Chauris L, Carron JP, Chevrier S, Gardinier A, Cotten J, Moan YL, Neidhart Y (1995) Magmatisme fissural triasico-liasique dans l’ouest du Massif armoricain (France): pétrologie, géochimie, âge, et modalités de la mise en place. Can J Earth Sci 32:1921–1936.  https://doi.org/10.1139/e95-147 CrossRefGoogle Scholar
  22. Cathelineau M (1981) Les Gisements Uraniferes de la Presqu’ile Guerandaise (Sud Bretagne); Approche Structurale et Metallogenique. Mineral Deposita 16:227–240.  https://doi.org/10.1007/BF00202737 CrossRefGoogle Scholar
  23. Cathelineau M (1982) Les gisements d’uranium liés spatialement aux leucogranites sud armoricains et à leur encaissant métamorphique: relations et interactions entre les minéralisations et divers contextes géologiques et structuraux. Sciences de la Terre, Mémoires 42. Université de NancyGoogle Scholar
  24. Cathelineau M, Boiron MC, Holliger P, Poty B (1990) Metallogenesis of the French part of the Variscan orogen. Part II: time-space relationships between U, Au and Sn-W ore deposition and geodynamic events—mineralogical and U-Pb data. Tectonophysics 177:59–79.  https://doi.org/10.1016/0040-1951(90)90274-C CrossRefGoogle Scholar
  25. Cathelineau M, Boiron MC, Fourcade S, Ruffet G, Clauer N, Belcourt O, Coulibaly Y, Banks DA, Guillocheau F (2012) A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K–Ar dating, fluid chemistry, and related geodynamic context. Chem Geol 322–323:99–120.  https://doi.org/10.1016/j.chemgeo.2012.06.008 CrossRefGoogle Scholar
  26. Cháb J, Stráník Z, Eliáš M (2007) Geologická mapa České republiky 1:500 000. Česká geologická služba, Praha, Czech RepublicGoogle Scholar
  27. Chantraine J, Autran A, Cavelier C (2003) Carte géologique de France 1:1 000 000 6ème édition révisée. BRGMGoogle Scholar
  28. Chauris L (1984) Accidents linéamentaires et minéralisations uranifères; L’exemple de la ceinture batholitique hercynienne médio-armoricaine (France). Bull Soc Geol Fr S7–XXVI:1375–1380.  https://doi.org/10.2113/gssgfbull.S7-XXVI.6.1375 CrossRefGoogle Scholar
  29. Chen Y, Clark AH, Farrar E, Wasteneys HAHP, Hodgson MJ, Bromley AV (1993) Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England. J Geol Soc 150:1183–1191.  https://doi.org/10.1144/gsjgs.150.6.1183 CrossRefGoogle Scholar
  30. Civis Llovera J (2015) Mapas geológicos de espana y Portugal 1:1 000 000. IGME: Instituto Geológico y Minero de EspañaGoogle Scholar
  31. Cotten J (1975) Etude des mégacristaux du granite de Rostrenen (Massif Armoricain). Dissertation, Université de Bretagne Occidentale, BrestGoogle Scholar
  32. Cuney M (2014) Felsic magmatism and uranium deposits. Bull Soc Geol Fr 185:75–92.  https://doi.org/10.2113/gssgfbull.185.2.75 CrossRefGoogle Scholar
  33. Cuney M (2006) Excursion « granites varisques et minéralisations uranifères ». L’exemple des masssifs de Ploumanac’h et de Pontivy. Partie II: Métallogenèse de l’uranium. Séminaire AREVA-BUM-DEXGoogle Scholar
  34. Cuney M, Kyser TK (2008) Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineral Assoc Canada Short Course Series 39Google Scholar
  35. Cuney M, Friedrich M, Blumenfeld P, Bourguignon A, Boiron MC, Vigneresse JL, Poty B (1990) Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations—a comparison with Sn, W and Au. Tectonophysics 177:39–57.  https://doi.org/10.1016/0040-1951(90)90273-B CrossRefGoogle Scholar
  36. D’Lemos RS, Brown M, Strachan RA (1992) Granite magma generation, ascent and emplacement within a transpressional orogen. J Geol Soc 149:487–490.  https://doi.org/10.1144/gsjgs.149.4.0487 CrossRefGoogle Scholar
  37. Dadet P, Bos P, Chantraine J, Laville P, Sagon JP (1988) Pontivy 313, Carte Géologique de France 1:50 000. BRGMGoogle Scholar
  38. Debon F, Le Fort P (1988) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull Mineral 111(5):493–510Google Scholar
  39. De Saint BM, Tikoff B, Teyssier C, Vigneresse JL (1998) Transpressional kinematics and magmatic arcs. Geol Soc Lond Spec Publ 135:327–340.  https://doi.org/10.1144/GSL.SP.1998.135.01.21 CrossRefGoogle Scholar
  40. Dolníček Z, René M, Hermannová S, Prochaska W (2013) Origin of the Okrouhlá Radouň episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Mineral Deposita 49:409–425.  https://doi.org/10.1007/s00126-013-0500-5 CrossRefGoogle Scholar
  41. Dubessy J, Ramboz C, Nguyen Trung C, Cathelineau M, Charoy B, Cuney M, Leroy J, Poty B, Weisbrod A (1987) Physical and chemical control (pO2, T, pH) of the opposite behaviour of U and Sn-W as exemplified by hydrothermal deposits in France and Great Britain, and solubility data. Bull Mineral 110:262–281Google Scholar
  42. Euzen T (1993) Pétrogenèse des granites de collision post-épaississement. Le cas des granites crustaux et mantelliques du complexe de Pontivy-Rostrenen (Massif Armoricain, France). Memoires Géosciences Rennes 51Google Scholar
  43. Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575Google Scholar
  44. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96.  https://doi.org/10.1007/BF01172478 CrossRefGoogle Scholar
  45. Förster HJ (1999) The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineral Mag 63:239–252.  https://doi.org/10.1180/002646199548466 CrossRefGoogle Scholar
  46. Förster HJ, Rhede D, Hecht L (2008) Chemical composition of radioactive accessory minerals: implications for the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany). Neues Jahrb Fr Mineral - Abh J Mineral Geoche 185:161–182.  https://doi.org/10.1127/0077-7757/2008/0117 CrossRefGoogle Scholar
  47. Friedrich M, Cuney M, Poty B (1987) Uranium geochemistry in peraluminous leucogranites. Uranium 3:353–385Google Scholar
  48. Fusán O, Kodym O, Matějka A et al (1967) Geological map of Czechoslovakia 1:500 000. Czech Geological Survey, PrahaGoogle Scholar
  49. Gaafar I (2015) Application of gamma ray spectrometric measurements and VLF-EM data for tracing vein type uranium mineralization, El-Sela area, South Eastern Desert, Egypt. NRIAG J Astron Geophys 4:266–282.  https://doi.org/10.1016/j.nrjag.2015.10.001 CrossRefGoogle Scholar
  50. Gaafar I, Cuney M, Gawad AA (2014) Mineral chemistry of two-mica granite rare metals: impact of geophysics on the distribution of uranium mineralization at El Sela Shear Zone, Egypt. Open J Geol 4:137–160.  https://doi.org/10.4236/ojg.2014.44011 CrossRefGoogle Scholar
  51. Gapais D (1989) Shear structures within deformed granites: mechanical and thermal indicators. Geology 17:1144–1147.  https://doi.org/10.1130/0091-7613(1989)017<1144:SSWDGM>2.3.CO;2 CrossRefGoogle Scholar
  52. Gapais D, Brun JP, Gumiaux C, Cagnard F, Ruffet G, Le Carlier De Veslud C (2015) Extensional tectonics in the Hercynian Armorican belt (France). An overview. Bull Soc Geol Fr 186:117–129.  https://doi.org/10.2113/gssgfbull.186.2-3.117 CrossRefGoogle Scholar
  53. Gapais D, Lagarde JL, Le Corre C, Audren C, Jegouzo P, Casas Sainz A, Van Den Driessche J (1993) La zone de cisaillement de Quiberon: témoin d'extension de la chaine varisque en Bretagne méridionale au Carbonifère. C R Acad Sci, Paris, série II 316:1123–1129Google Scholar
  54. Gapais D, Le Corre C (1980) Is the Hercynien belt of Brittany a major shear zone? Nature 288:574–576.  https://doi.org/10.1038/288574a0 CrossRefGoogle Scholar
  55. Gébelin A, Roger F, Brunel M (2009) Syntectonic crustal melting and high-grade metamorphism in a transpressional regime, Variscan Massif Central, France. Tectonophysics 477:229–243.  https://doi.org/10.1016/j.tecto.2009.03.022 CrossRefGoogle Scholar
  56. Gumiaux C, Judenherc S, Brun JP, Gapais D, Granet M, Poupinet G (2004b) Restoration of lithosphere-scale wrenching from integrated structural and tomographic data (Hercynian belt of western France). Geology 32:333–336.  https://doi.org/10.1130/G20134.2 CrossRefGoogle Scholar
  57. Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G (2004a) Tectonic history of the Hercynian Armorican Shear belt (Brittany, France). Geodin Acta 17:289–307.  https://doi.org/10.3166/ga.17.289-307 CrossRefGoogle Scholar
  58. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Johnston ST, Pastor-Galán D, Murphy JB, Franco MP, Gonzalo JC (2011) Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30:TC5008.  https://doi.org/10.1029/2010TC002845 CrossRefGoogle Scholar
  59. Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M (2017) 40 Ma years of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite. Mineral Deposita:1–31.  https://doi.org/10.1007/s00126-017-0721-0
  60. Hutton DHW, Reavy RJ (1992) Strike-slip tectonics and granite petrogenesis. Tectonics 11:960–967.  https://doi.org/10.1029/92TC00336 CrossRefGoogle Scholar
  61. IRSN (2004) Inventaire national des sites miniers d'uranium. Institut de Radioprotection et de Sureté NucléaireGoogle Scholar
  62. Jégouzo P, Rossello EA (1988) La Branche Nord du Cisaillement Sud-Armoricain (France): un essai d'évaluation du déplacement par l'analyse des mylonites. C R Acad Sci, Paris, Série II 307(17):1825–1831Google Scholar
  63. Jégouzo P (1980) The South Armorican Shear Zone. J Struct Geol 2:39–47.  https://doi.org/10.1016/0191-8141(80)90032-2 CrossRefGoogle Scholar
  64. Judenherc S, Granet M, Brun JP, Poupinet G (2003) The Hercynian collision in the Armorican Massif: evidence of different lithospheric domains inferred from seismic tomography and anisotropy. Bull Soc Geol Fr 174:45–57CrossRefGoogle Scholar
  65. Kempe U, Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66(1):151–172Google Scholar
  66. Kříbek B, Žák K, Dobeš P, Leichmann J, Pudilová M, René M, Scharm B, Scharmová M, Hájek A, Holeczy D, Hein UF, Lehmann B (2008) The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Mineral Deposita 44:99–128.  https://doi.org/10.1007/s00126-008-0188-0 Google Scholar
  67. Kroner U, Romer RL (2013) Two plates - many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329.  https://doi.org/10.1016/j.gr.2013.03.001 CrossRefGoogle Scholar
  68. Lemarchand J, Boulvais P, Gaboriau M, Boiron MC, Tartèse R, Cokkinos M, Bonnet S, Jégouzo P (2012) Giant quartz vein formation and high-elevation meteoric fluid infiltration into the South Armorican Shear Zone: geological, fluid inclusion and stable isotope evidence. J Geol Soc 169:17–27.  https://doi.org/10.1144/0016-76492010-186 CrossRefGoogle Scholar
  69. Lespinasse M, Cathelineau M (1990) Fluid percolations in a fault zone: a study of fluid inclusion planes in the St Sylvestre granite, northwest Massif Central, France. Tectonophysics 184:173–187.  https://doi.org/10.1016/0040-1951(90)90052-A CrossRefGoogle Scholar
  70. Li JW, Zhou MF, Li XF, Fu ZR, Li ZJ (2002) Structural control on uranium mineralization in South China: implications for fluid flow in continental strike-slip faults. Sci China Ser Earth Sci 45:851–864.  https://doi.org/10.1007/BF02879519 CrossRefGoogle Scholar
  71. Li JW, Zhou MF, Li XF, Fu ZR, Li ZJ (2001) The Hunan-Jiangxi strike-slip fault system in southern China: southern termination of the Tan-Lu fault. J Geodyn 32:333–354.  https://doi.org/10.1016/S0264-3707(01)00033-3 CrossRefGoogle Scholar
  72. López-Moro FJ, Moro MC, Timón SM, Cembranos ML, Cózar J (2013) Constraints regarding gold deposition in episyenites: the Permian episyenites associated with the Villalcampo Shear Zone, central western Spain. Int J Earth Sci 102:721–744.  https://doi.org/10.1007/s00531-012-0844-6 CrossRefGoogle Scholar
  73. Ludwig KR (2001) Isoplot, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Publ 5:75Google Scholar
  74. Ludwig KR, Simmons KR (1992) U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region. Econ Geol 87:1747–1765.  https://doi.org/10.2113/gsecongeo.87.7.1747 CrossRefGoogle Scholar
  75. Marcoux E (1982) Etude géologique et métallogénique du district plombo-zincifère de Pontivy (Massif armoricain, France) : Relations avec les paragenèses stannifères et uranifères. Bull BRGM (2), section II, n 1: 1–24Google Scholar
  76. Marignac C, Cuney M (1999) Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineral Deposita 34:472–504.  https://doi.org/10.1007/s001260050216 CrossRefGoogle Scholar
  77. Marshall DJ (1980) Cathodoluminescence of geological materials. Hunwin HymanGoogle Scholar
  78. McCann T, Pascal C, Timmerman MJ, Krzywiec P, López-Gómez J, Wetzel L, Krawczyk CM, Rieke H, Lamarche J (2006) Post-Variscan (end Carboniferous-Early Permian) basin evolution in Western and Central Europe. Geol Soc Lond Mem 32:355–388Google Scholar
  79. Miles AJ, Graham CM, Hawkesworth CJ, Gillespie MR, Hinton RW, Bromiley GD (2014) Apatite: a new redox proxy for silicic magmas? Geochim Cosmochim Acta 132:101–119.  https://doi.org/10.1016/j.gca.2014.01.040 CrossRefGoogle Scholar
  80. Mitchell RH, Xiong J, Mariano AN, Fleet ME (1997) Rare-earth-element-activated cathodoluminescence in apatite. Can Mineralogist 35:979–998Google Scholar
  81. Ouddou D (1984) Le Massif de Guérande-Le Croisic (Loire-Atlantique): Caractérisation géochimique et minéralogique de l'évolution magmatique. Comportement de l'uranium, Dissertation, INPL-CREGU Nancy Google Scholar
  82. Peiffert C, Nguyen-Trung C, Cuney M (1996) Uranium in granitic magmas: part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770°C, 2 kbar. Geochim Cosmochim Acta 60:1515–1529.  https://doi.org/10.1016/0016-7037(96)00039-7 CrossRefGoogle Scholar
  83. Peiffert C, Cuney M, Nguyen-Trung C (1994) Uranium in granitic magmas: part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-Na2CO3 system at 720–770°C, 2 kbar. Geochim Cosmochim Acta 58:2495–2507.  https://doi.org/10.1016/0016-7037(94)90026-4 CrossRefGoogle Scholar
  84. Pérez Del Villar L, Moro C (1991) Las mineralizaciones intragraníticas de Uranio en el batolito de Cabeza de Ar aya (provincia de Cáceres): El Saguazal, Brechas NNE y La Zafrilla. Stud Geol Salmant 27:85–112Google Scholar
  85. Perseil EA, Blanc P, Ohnenstetter D (2000) As-bearing fluorapatite in manganiferous deposits from St. Marcel – Praborna, Val d’Aosta, Italy. Can Mineralogist 38:101–117CrossRefGoogle Scholar
  86. Pirajno F (2010) Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn 50:325–346.  https://doi.org/10.1016/j.jog.2010.01.018 CrossRefGoogle Scholar
  87. Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D (2016) U-Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am Mineral 101:2430–2442.  https://doi.org/10.2138/am-2016-5844 CrossRefGoogle Scholar
  88. Roeder PL, McArthur D, Ma XP, Palmer GR, Mariano A (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. Am Mineral 72:801–811Google Scholar
  89. Romer RL, Schneider J, Linnemann U (2010) Post-Variscan deformation and hydrothermal mineralization in Saxo-Thuringia and beyond: a geochronologic review. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 347–360Google Scholar
  90. Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Mineral Deposita 42:337–359.  https://doi.org/10.1007/s00126-006-0114-2 CrossRefGoogle Scholar
  91. Scaillet S, Cheilletz A, Cuney M, Farrar E, Archibald DA (1996) Cooling pattern and mineralization history of the Saint Sylvestre and western Marche leucogranite pluton, French Massif Central: I. 40Ar/39Ar isotopic constraints. Geochim Cosmochim Acta 60:4653–4671.  https://doi.org/10.1016/S0016-7037(96)00291-8 CrossRefGoogle Scholar
  92. Sibson RH (1990) Conditions for fault-valve behaviour. Geol Soc Lond Spec Publ 54:15–28.  https://doi.org/10.1144/GSL.SP.1990.054.01.02 CrossRefGoogle Scholar
  93. Sibson RH (1987) Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15:701–704.  https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2 CrossRefGoogle Scholar
  94. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221.  https://doi.org/10.1016/0012-821X(75)90088-6 CrossRefGoogle Scholar
  95. Strong DF, Hanmer SK (1981) The leucogranites of southern Brittany; origin by faulting, frictional heating, fluid flux and fractional melting. Can Mineral 19:163–176Google Scholar
  96. Tartèse R, Boulvais P (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos 114:353–368.  https://doi.org/10.1016/j.lithos.2009.09.011 CrossRefGoogle Scholar
  97. Tartèse R, Boulvais P, Poujol M, Gloaguen E, Cuney M (2013) Uranium mobilization from the Variscan Questembert syntectonic granite during fluid-rock interaction at depth. Econ Geol 108:379–386.  https://doi.org/10.2113/econgeo.108.2.379 CrossRefGoogle Scholar
  98. Tartèse R, Boulvais P, Poujol M, Chevalier T, Paquette JL, Ireland TR, Deloule E (2012) Mylonites of the South Armorican Shear Zone: insights for crustal-scale fluid flow and water–rock interaction processes. J Geodyn 56–57:86–107.  https://doi.org/10.1016/j.jog.2011.05.003 CrossRefGoogle Scholar
  99. Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR (2011b) Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23:390–398.  https://doi.org/10.1111/j.1365-3121.2011.01024.x CrossRefGoogle Scholar
  100. Tartèse R, Poujol M, Ruffet G, Boulvais P, Yamato P, Košler J (2011a) New U-Pb zircon and 40Ar/39Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican Massif, France). Comptes Rendus Geosci 343:443–453.  https://doi.org/10.1016/j.crte.2011.07.005 CrossRefGoogle Scholar
  101. Tischendorf G, Förster HJ (1994) Hercynian granite magmatism and related metallogenesis in the Erzgebirge: a status report. Mineral deposits of the Erzgebirge/Krusne hory (Germany/Czech Republic). Monogr Ser Mineral Deposits 31:5–23Google Scholar
  102. Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France. Chem Geol 88:85–98.  https://doi.org/10.1016/0009-2541(90)90105-G CrossRefGoogle Scholar
  103. Turrillot P, Augier R, Faure M (2009) The top-to-the-southeast Sarzeau shear zone and its place in the late-orogenic extensional tectonics of southern Armorica. Bull Soc Geol Fr 180:247–261.  https://doi.org/10.2113/gssgfbull.180.3.247 CrossRefGoogle Scholar
  104. Vigneresse JL (1999) Intrusion level of granitic massifs along the Hercynian belt: balancing the eroded crust. Tectonophysics 307:277–295.  https://doi.org/10.1016/S0040-1951(99)00104-3 CrossRefGoogle Scholar
  105. Vigneresse JL, Brun JP (1983) Les leucogranites armoricains marqueurs de la déformation régionale; apport de la gravimétrie. Bull Soc Geol Fr S7–XXV:357–366.  https://doi.org/10.2113/gssgfbull.S7-XXV.3.357 CrossRefGoogle Scholar
  106. Vigneresse JL, Cuney M, Jolivet J, Bienfait G (1989) Selective heat-producing element enrichment in a crustal segment of the mid-European Variscan chain. Tectonophysics 159:47–60.  https://doi.org/10.1016/0040-1951(89)90169-8 CrossRefGoogle Scholar
  107. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187.  https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. Ballouard
    • 1
    • 2
  • M. Poujol
    • 1
  • J. Mercadier
    • 3
  • E. Deloule
    • 4
  • P. Boulvais
    • 1
  • J. M. Baele
    • 5
  • M. Cuney
    • 3
  • M. Cathelineau
    • 3
  1. 1.UMR CNRS 6118, Géosciences Rennes, OSURUniversité Rennes 1Rennes CedexFrance
  2. 2.Department of GeologyUniversity of JohannesburgAuckland ParkSouth Africa
  3. 3.CNRS, CREGU, GeoRessourcesUniversité de LorraineVandoeuvre-lès-NancyFrance
  4. 4.CRPG, UMR 7358 CNRSUniversité de LorraineVandoeuvre CedexFrance
  5. 5.Department of Geology and Applied GeologyUniversity of MonsMonsBelgium

Personalised recommendations