Mineralium Deposita

, Volume 52, Issue 6, pp 791–798 | Cite as

Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation

  • Sean C. Johnson
  • Ross R. Large
  • Raymond M. Coveney
  • Karen D. Kelley
  • John F. Slack
  • Jeffrey A. Steadman
  • Daniel D. Gregory
  • Patrick J. Sack
  • Sebastien Meffre


Highly metalliferous black shales (HMBS) are enriched in organic carbon and a suite of metals, including Ni, Se, Mo, Ag, Au, Zn, Cu, Pb, V, As, Sb, Se, P, Cr, and U ± PGE, compared to common black shales, and are distributed at particular times through Earth history. They constitute an important future source of metals. HMBS are relatively thin units within thicker packages of regionally extensive, continental margin or intra-continental marine shales that are rich in organic matter and bio-essential trace elements. Accumulation and preservation of black shales, and the metals contained within them, usually require low-oxygen or euxinic bottom waters. However, whole-rock redox proxies, particularly Mo, suggest that HMBS may have formed during periods of elevated atmosphere pO2. This interpretation is supported by high levels of nutrient trace elements within these rocks and secular patterns of Se and Se/Co ratios in sedimentary pyrite through Earth history, with peaks occurring in the middle Paleoproterozoic, Early Cambrian to Early Ordovician, Middle Devonian, Middle to late Carboniferous, Middle Permian, and Middle to Late Cretaceous, all corresponding with time periods of HMBS deposition. This counter-intuitive relationship of strongly anoxic to euxinic, localized seafloor conditions forming under an atmosphere of peak oxygen concentrations is proposed as key to the genesis of HMBS. The secular peaks and shoulders of enriched Se in sedimentary pyrite through time correlate with periods of tectonic plate collision, which resulted in high nutrient supply to the oceans and consequently maximum productivity accompanying severe drawdown into seafloor muds of C, S, P, and nutrient trace metals. The focused burial of C and S over extensive areas of the seafloor, during these anoxic to euxinic periods, likely resulted in an O2 increase in the atmosphere, causing short-lived peaks in pO2 that coincide with the deposition of HMBS. As metals become scarce, particularly Mo, Ni, Se, Ag, and U, the geological times of these narrow HMBS horizons will become a future focus for exploration.


Phytoplankton Pyrite Black Shale Metal Enrichment Cariaco Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to Leonid Danyushevsky, Sarah Gilbert, Paul Olin, and Elena Lounejeva, who ensured high-quality analyses of pyrite for this project. Rob Willink kindly provided access to drill cores from the Arthur Creek Formation, Queensland. Special thanks to Jan Peter and Hartwig Frimmell for their excellent reviews and suggestions for improvement of the manuscript. SCJ was supported by an ANZIC-IODP grant (ARC LE0882854) and the Mining Institute of Scotland’s Sam Mavor Travelling Scholarship. Large was supported by an ARC grant DP 150102578.

Supplementary material

126_2017_735_MOESM1_ESM.pptx (502 kb)
ESM 1 (PPTX 501 kb)
126_2017_735_MOESM2_ESM.xlsx (19 kb)
Table S1 (XLSX 18 kb)
126_2017_735_MOESM3_ESM.pdf (231 kb)
Table S2 (PDF 230 kb)
126_2017_735_MOESM4_ESM.pdf (33 kb)
Table S3 (PDF 32 kb)
126_2017_735_MOESM5_ESM.pdf (127 kb)
Table S4 (PDF 127 kb)
126_2017_735_MOESM6_ESM.pdf (511 kb)
Table S5 (PDF 511 kb)


  1. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906CrossRefGoogle Scholar
  2. Andersson A, Dahlman D, Gee DG, Snall S (1985) The Scandinavian alum shales. Sver Geol Unders 56:1–50Google Scholar
  3. Arthur MA, Sageman BB (2005) Sea-level control on source-rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. SEPM Special Publication 82Google Scholar
  4. Berner RA (2009) Phanerozoic atmospheric oxygen: new results using the geocarbsulf model. Am J Sci 309:603–606CrossRefGoogle Scholar
  5. Brumsack H-J (1980) Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP legs 11, 14, 36 and 41). Chem Geol 31:1–25CrossRefGoogle Scholar
  6. Brumsack H-J (2006) The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol 232:344–361CrossRefGoogle Scholar
  7. Campbell I, Allen C (2008) Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci 1:554–558CrossRefGoogle Scholar
  8. Condie KC (2011) Earth as an evolving planetary system. Academic Press, Elsevier, p 578Google Scholar
  9. Coveney RM Jr, Glascock MD (1989) A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Appl Geochem 4:347–367CrossRefGoogle Scholar
  10. Coveney RM Jr, Leventhal JS, Glascock MD, Hatch JR (1987) Origins of metals and organic matter in the Mecca Quarry shale member and stratigraphically equivalent beds across the Midwest. Econ Geol 82:915–933CrossRefGoogle Scholar
  11. Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Experim Biol 201:8Google Scholar
  12. Glasspool IJ, Scott A (2010) Phanerozoic atmospheric oxygen concentrations reconstructed from sedimentary charcoal. Nat Geosci 3:627–630CrossRefGoogle Scholar
  13. Gregory DD, Large RR, Halpin JA, Lounejeva E, Lyons TW, Wu S, Danyushevsky LV, Sack P, Chappaz A, Maslennikov VV (2015) Trace element content of sedimentary pyrite in black shales. Econ Geol 110:1389–1410CrossRefGoogle Scholar
  14. Holland HD (1979) Metals in black shales: a reassessment. Econ Geol 74:1676–1680CrossRefGoogle Scholar
  15. Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702CrossRefGoogle Scholar
  16. Hulbert LJ, Gregoire DC, Paktunc G, Carne RC (1992) Sedimentary nickel, zinc, and platinum-group-element mineralization in Devonian black shales at the Nick property, Yukon, Canada: a new deposit type. Explor Min Geol 1:39–62Google Scholar
  17. Hutchison MP, Fraser TA (2015) Palaeoenvironment, palaeohydrography and chemostratigraphic zonation of the Canol Formation, Richardson Mountains, north Yukon. In MacFarlane KE. Nordling MG, Sack PJ (eds) Yukon Exploration and Geology 2014, Yukon Geological Survey 73–98Google Scholar
  18. Huyck HLO (1989) When is a metalliferous black shale not a black shale? U.S. Geological Surv Circular 1058:42–56Google Scholar
  19. Jenkyns HC (2010) Geochemistry of ocean anoxic events. Geochem Geophys Geosyst 11:30CrossRefGoogle Scholar
  20. Jiang SY, Yang JH, Ling HF, Chen YQ, Feng HZ, Zhao KD, Ni P (2007) Extreme enrichment of polymetallic Ni–Mo–PGE–au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation. Palaeogeogr Palaeoclimatol Palaeoecol 254:217–228CrossRefGoogle Scholar
  21. Johnson SC (2016) The Geochemistry of Metalliferous Black Shales. Unpubl PhD thesis, University of Tasmania, AustraliaGoogle Scholar
  22. Johnson SC, Large RR, Kontian A, Meffre S, Boyce A J (2015) Primary metal enrichment and metamorphism at the Talvivaara Ni-Zn-Co-Pb-U deposit, Finland, Abstract, 13th Biennial SGA meeting, Nancy, France. August 2015. Abstract volumeGoogle Scholar
  23. Kelley KD, Selby D, Falck H, Slack JF (2016) Re-Os systematics and age of pyrite associated with stratiform Zn-Pb mineralization in the Howards pass district, Yukon and northwest territories, Canada. Mineral Deposita 52:317–335CrossRefGoogle Scholar
  24. Kontinen A, Hanski E (2015) The Talvivaara black shale-hosted Ni-Zn-Cu-Co deposit in eastern Finland. In Maier WA, Lahtinen R, O’Brien H (eds) Mineral deposits of Finland. Amsterdam, Elsevier, available at: doi:  10.1016/B978–0–12-410438-9.00022-4
  25. Laakso TA, Schrag DP (2014) Regulation of atmospheric oxygen during the Proterozoic. Earth Planet Sci Letts 388:81–91CrossRefGoogle Scholar
  26. Large RR, Danyushevsky LV, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J (2009) Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104:635–668CrossRefGoogle Scholar
  27. Large RR, Halpin JA, Danyushevsky LV, Maslennikov VV, Bull SW, Long JA, Gregory DD, Lounejeva E, Lyons TW, Sack PJ, McGoldrick PJ, Calver CR (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet Sci Letts 389:209–220CrossRefGoogle Scholar
  28. Large RR, Halpin JA, Lounejeva E, Danyushevsky LD, Maslennikov VV, Gregory D, Sack PJ, Haines PW, Long JA, Makoundi C, Stepanov AS (2015) Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Res 28:1282–1293CrossRefGoogle Scholar
  29. Large RR, Mukherjee I, Gregory DD, Steadman J, Meffre S (2017) Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite; Implications for ore genesis in sedimentary basins. Econ Geol 112:423–450CrossRefGoogle Scholar
  30. Laurie JR (2012) Biostratigraphy of the Arthur Creek Formation and Thorntonia Limestone, Georgina Basin. Abstract, Geoscience Australia Central Australian Basins Symposium III, Alice Springs, 2012, Abstract volumeGoogle Scholar
  31. Lehmann B, Mao JW, Li SR, Zhang GD, Zeng MG (2003) Re-Os dating of polymetallic Ni-Mo-PGE-au mineralization in Lower Cambrian black shales of South China and its geologic significance—a reply. Econ Geol 98:663–665Google Scholar
  32. Lehmann B, Nägler TF, Holland HD, Wille M, Mao J, Pan J, Dongsheng M, Dulski P (2007) Highly metalliferous carbonaceous shale and early Cambrian seawater. Geology 35:403–406CrossRefGoogle Scholar
  33. Lehmann B, Frei R, Xu L, Mao J (2016) Early Cambrian black shale hosted Mo-Ni and V mineralisation on the rifted margin of the Yangtze platform China: reconnaissance chromium isotope data and a refined metallogenic model. Econ Geol 111:89–104CrossRefGoogle Scholar
  34. Lode S, Piercey SJ, Devine CA (2015) Geology, mineralogy, and lithogeochemistry of metalliferous mudstones associated with the Lemarchant volcanogenic massive sulfide deposit, tally pond belt, central Newfoundland. Econ Geol 110:1835–1859CrossRefGoogle Scholar
  35. Loukola-Ruskeeniemi K (1991) Geochemical evidence for the hydrothermal origin of sulphur, base metals and gold in Proterozoic metamorphosed black shales, Kainuu and Outokumpu areas, Finland. Mineral Deposita 26:152–164Google Scholar
  36. Lyons TW, Severmann S (2006) A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim Cosmochim Acta 70(23):5698–5722Google Scholar
  37. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315CrossRefGoogle Scholar
  38. Lyons TW, Werne JP, Hollander DJ, Murray RW (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem Geol 195(1-4):131–157Google Scholar
  39. Meyer KM, Kump LR (2008) Ocean euxinia in Earth history: causes and consequences. Annu Rev Earth Planet Sci 36:251–288CrossRefGoogle Scholar
  40. Mukherjee I, Large RR (2016) Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, northern territory, Australia. Ore Geol Rev 81:1249–1270CrossRefGoogle Scholar
  41. Nielsen AT, Schovsbo NH (2011) The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth Sci Rev 107:207–310CrossRefGoogle Scholar
  42. Och LM, Shields-Zhou GA, Poulton SW, Manning C, Thirlwall MF, Li D, Chen X, Ling HF, Osborn T, Cremonese V (2013) Redox changes in early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambr Res 225:166–189CrossRefGoogle Scholar
  43. Piper DZ (1994) Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem Geol 114:95–114CrossRefGoogle Scholar
  44. Piper DZ, Dean WE (2002) Trace-element deposition in the Cariaco Basin, Venezuela shelf, under sulfate-reducing conditions—a history of the local hydrography and global climate, 20 ka to the present. US Geol Surv Prof Paper 1670:41Google Scholar
  45. Piper DZ, Merando MD (1994) Geochemistry of the Phosphoria Formation at Montpelier Canyon, Idaho: Environment of deposition: U.S. Geol Surv Bull 2023:28Google Scholar
  46. Scott C, Kelley KD, Slack JF (2014) The geobiology of sediment-hosted ore deposits. Soc Econ Geol Spec Publ 18:17–35Google Scholar
  47. Slack JF, Selby D, Dumoulin JA (2015) Hydrothermal, biogenic, and seawater components in metalliferous black shales of the brooks range, northern Alaska: Synsedimentary metal enrichment in a carbonate ramp setting. Econ Geol 110:653–675CrossRefGoogle Scholar
  48. Trabucho Alexandre J, Tuenter E, Henstra GA, van der Zwan KJ, van de Wal RSW, Dijkstra HA, de Boer PL (2010) The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography 25:4201. doi: 10.1029/2010PA001925 CrossRefGoogle Scholar
  49. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32CrossRefGoogle Scholar
  50. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Garden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha G, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater: Chem Geol 161: 59–88Google Scholar
  51. Willink R, Allison M (2015) Exploring unconventional plays in the Georgina Basin, central Australia: Will the real Arthur Creek Formation ‘Hot Shale’ please stand up! APPEA Conference, Melbourne, Australia, 17–18 May 2015 Abstract volumeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sean C. Johnson
    • 1
    • 2
  • Ross R. Large
    • 1
  • Raymond M. Coveney
    • 3
  • Karen D. Kelley
    • 4
  • John F. Slack
    • 5
  • Jeffrey A. Steadman
    • 1
  • Daniel D. Gregory
    • 6
  • Patrick J. Sack
    • 7
  • Sebastien Meffre
    • 1
  1. 1.CODES, ARC Centre of Excellence in Ore DepositsUniversity of TasmaniaSandy BayAustralia
  2. 2.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  3. 3.University of MissouriKansas CityUSA
  4. 4.U.S. Geological SurveyDenverUSA
  5. 5.U.S. Geological Survey (Emeritus)RestonUSA
  6. 6.University of CaliforniaCAUSA
  7. 7.Yukon Geological SurveyWhitehorseCanada

Personalised recommendations