Mineralium Deposita

, Volume 51, Issue 8, pp 1055–1073 | Cite as

Mantle source of the 2.44–2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions

  • Sheng-Hong YangEmail author
  • Eero Hanski
  • Chao LiEmail author
  • Wolfgang D. Maier
  • Hannu Huhma
  • Artem V. Mokrushin
  • Rais Latypov
  • Yann Lahaye
  • Hugh O’Brien
  • Wen-Jun Qu


Significant PGE and Cr mineralization occurs in a number of 2.44–2.50-Ga mafic layered intrusions located across the Karelian and Kola cratons. The intrusions have been interpreted to be related to mantle plume activity. Most of the intrusions have negative εNd values of about −1 to −2 and slightly radiogenic initial Sr isotope compositions of about 0.702 to 0.703. One potential explanation is crustal contamination of a magma derived from a mantle plume, but another possibility is that the magma was derived from metasomatized sub-continental lithospheric mantle. Samples from the upper chromitite layers of the Kemi intrusion and most samples from the previously studied Koitelainen and Akanvaara intrusions have supra-chondritic γOs values indicating some crustal contamination, which may have contributed to the formation of chromitites in these intrusions. Chromite separates from the main ore zone of the Kemi and Monchepluton intrusions show nearly chondritic γOs, similar to the coeval Vetreny belt komatiites. We suggest that the Os isotope composition of the primitive magma was not significantly changed by crustal contamination due to a high Os content of the magma and a low Os content of the contaminant. Modeling suggests that the Os and Nd isotope compositions of the Monchepluton and Kemi intrusions cannot be explained by assuming a magma source in the sub-continental lithospheric mantle with sub-chondritic γOs. A better match for the isotope data would be a plume mantle source with chondritic Re/Os and Os isotope composition, followed by crustal contamination.


Chromite Os isotopes Nd isotopes Mantle plume Layered intrusions Paleoproterozoic Fennoscandian Shield 



Liming Zhou, Andao Du, Fagang Zeng, and Li Li are thanked for Re-Os isotope analysis. Laboratory assistance in Sm-Nd and Rb-Sr analysis by Tuula Hokkanen and Arto Pulkkinen is acknowledged. Riitta Kontio is thanked for preparing chromite separates. Brain O’Driscoll and Alexandra Yang Yang are thanked for constructive reviews and Bernd Lehmann for editorial handling of the manuscript. This work was funded by the projects of Academy of Finland (No. 276614, 281859) and the K.H. Renlund Foundation.

Supplementary material

126_2016_673_MOESM1_ESM.docx (17 kb)
ESM 1 Sm-Nd isotope data source of different granitoids from the Karelian Craton, ranging in age from ∼2.44 Ga to ∼3.4 Ga. (DOCX 17 kb)


  1. Alapieti TT, Huhtelin TA (2005) The Kemi intrusion and associated chromitite deposit. In Alapieti TT, Kärki AJ (eds) Early Palaeoproterozoic (2.5–2.4 Ga) Tornio–Näränkävaara layered intrusion belt and related chrome and platinum-group element mineralization, Northern Finland. Geol Surv Finl, Guide 51a:13–32Google Scholar
  2. Alapieti TT, Kujanpää J, Lahtinen JJ, Papunen H (1989) The Kemi stratiform chromitite deposit, northern Finland. Econ Geol 84:1057–1077CrossRefGoogle Scholar
  3. Alapieti TT, Filen BA, Lahtinen JJ, Lavrov MM, Smolkin VF, Voitsekhovsky SN (1990) Early Proterozoic layered intrusions in the northeastern part of the Fennoscandian Shield. Mineral Petrol 42:1–22Google Scholar
  4. Amelin YV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting. Precam Res 75:31–46CrossRefGoogle Scholar
  5. Amelin YV, Semenov VS (1996) Nd and Sr isotopic geochemistry of mafic layered intrusions in the eastern Baltic Shield: implications for the evolution of Paleoproterozoic continental mafic magmas. Contrib Mineral Petrol 124:255–272CrossRefGoogle Scholar
  6. Arndt NT, Czamanske GK, Wooden JL, Fedorenko VA (1993) Mantle and crustal contributions to continental food basalt volcanism. Tectonophysics 223:39–52CrossRefGoogle Scholar
  7. Arndt N (2013) The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits. Econ Geol 108:1953–1970CrossRefGoogle Scholar
  8. Aspler LB, Chiarenzelli JR (1998) Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sediment Geol 120:75–104CrossRefGoogle Scholar
  9. Aulbach S, Mungall JE, Pearson DG (2015) Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. Rev Minera Geochem 81:239–304CrossRefGoogle Scholar
  10. Balashov YA, Bayanova TB, Mitrofanov FP (1993) Isotope data on the age and genesis of layered basic-ultrabasic intrusions in the Kola Peninsula and Northern Karelia, northeastern Baltic Shield. Precam Res 64:197–205CrossRefGoogle Scholar
  11. Bayanova T, Ludden J, Mitrofanov FP (2009) Timing and duration of Palaeoproterozoic events producing ore-bearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications. Geol Soc Lond (Special Publications) 323:165–198CrossRefGoogle Scholar
  12. Becker H, Horan MF, Walker RJ, Gao S, Lorand JP, Rudnick RL (2006) Highly siderophile element compositions of the earth’s primitive mantle. Geochim Cosmochim Acta 70:4528–4550CrossRefGoogle Scholar
  13. Brandon AD, Creaser RA, Shirey SB, Carlson RW (1996) Os recycling in subduction zones. Science 272:861–864CrossRefGoogle Scholar
  14. Brooks CK, Keays RR, Lambert DD, Frick LR, Nielsen TFD (1999) Re-Os isotope geochemistry of Tertiary picritic and basaltic magmatism of East Greenland: constraints on plume–lithosphere interactions and the genesis of the Platinova reef, Skaergaard intrusion. Lithos 47:107–126CrossRefGoogle Scholar
  15. Carlson RW, Irving AJ (1994) Depletion and enrichment history of subcontinental and lithospheric mantle: an Os, Sr, Nd and Pb isotopic study from the northwestern Wyoming Craton. Earth Planet Sci Lett 126:457–472CrossRefGoogle Scholar
  16. Carlson RW (2005) Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos 82:249–272CrossRefGoogle Scholar
  17. Chashchin VV, Galkin AS, Ozeryanskii VV, Dedyukhin AN (1999) Sopcha Lake chromite deposit and its platinum potential, Monchegorsk Pluton, Kola Peninsula (Russia). Geol Ore Dep 41:460–468Google Scholar
  18. Chesley JT, Rudnick RL, Lee CT (1999) Re-Os systematics of mantle xenoliths from the East African Rift: age, structure and history of the Tanzanian craton. Geochim Cosmochim Acta 63:1203–1217CrossRefGoogle Scholar
  19. Chesley J, Righter K, Ruiz J (2004) Large-scale mantle metasomatism: a Re-Os perspective. Earth Planet Sci Lett 219:49–60CrossRefGoogle Scholar
  20. Chu ZY, FY W, Walker RJ, Rudnick RL, Pitcher L, Puchtel IS, Yang YH, Wilde SA (2009) Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol 50:1857–1898CrossRefGoogle Scholar
  21. Chung SL, Jahn BM (1995) Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geol 23:889–892CrossRefGoogle Scholar
  22. Ciborowski TJR, Kerr AC, McDonald I, Ernst RE, Hughes HSR, Minifie MJ (2014) The geochemistry and petrogenesis of the Paleoproterozoic du Chef dyke swarm, Québec, Canada. Precam Res 250:151–166CrossRefGoogle Scholar
  23. Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass-spectrometry of osmium, rhenium, and iridium. Geochim Cosmochim Acta 55:397–401CrossRefGoogle Scholar
  24. Dale CW, Pearson DG, Starkey NA, Stuart FM, Ellam RM, Larsen LM, Fitton JG, Macpherson CG (2009) Osmium isotopes in Baffin Island and West Greenland picrites: implications for the 187Os/188Os composition of the convecting mantle and the nature of the high 3He/4He mantle. Earth Planet Sci Lett 278:267–277CrossRefGoogle Scholar
  25. Day JMD, Pearson DG, Hulbert LJ (2008) Rhenium–osmium isotope and platinum group element constraints on the origin and evolution of the 1.27 Ga Muskox layered intrusion. J Petrol 49:1255–1295CrossRefGoogle Scholar
  26. DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291:684–687CrossRefGoogle Scholar
  27. Du AD, Zhao DM, Wang SX, Sun DZ, Liu DY (2001) Precise Re–Os dating for molybdenite by ID-NTIMS with Carius tube sample preparation. Rock Miner Anal 20:247–252 in Chinese with English abstractGoogle Scholar
  28. Du AD, SQ W, Sun DZ, Wang SX, WJ Q, Markey R, Stein H, Morgan J, Malinovskiy D (2004) Preparation and certification of Re–Os dating reference materials: molybdenites HLP and JDC. Geostand Geoanal Res 28:41–52CrossRefGoogle Scholar
  29. Du AD, Qu WJ, Wang DH, Li C (2012) Re–Os dating and its application in ore deposits. Geol Publ House (in Chinese), 182 ppGoogle Scholar
  30. Eales HV (2000) Implications of the chromium budget of the Western Limb of the Bushveld Complex. S Afr J Geol 103:141–150CrossRefGoogle Scholar
  31. Ellam RM, Carlson RW, Shirey SB (1992) Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo food basalt genesis. Nature 359:718–721CrossRefGoogle Scholar
  32. Ernst R, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can J Earth Sci 47:695–739CrossRefGoogle Scholar
  33. Ersoy Y, Helvaci C (2010) FC–AFC–FCA and mixing modeler: a Microsoft Excel spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Comput Geosci 36:383–390CrossRefGoogle Scholar
  34. Foster JG, Lambert DD, Frick LR, Maas R (1996) Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature 382:703–706CrossRefGoogle Scholar
  35. Gallagher K, Hawkesworth CJ (1992) Dehydration melting and the generation of continental food basalts. Nature 258:57–59CrossRefGoogle Scholar
  36. Gangopadhyay A, Walker RJ, Hanski E, Solheid PA (2006) Origin of Paleoproterozoic komatiites at Jeesiörova, Kittilä Greenstone Complex, Finnish Lapland. J Petrol 47:773–789CrossRefGoogle Scholar
  37. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett 198:307–322CrossRefGoogle Scholar
  38. Griffin WL, Graham S, O’Reilly SY, Pearson NJ (2004) Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Chem Geol 208:89–118CrossRefGoogle Scholar
  39. Han CM, Xiao WJ, Zhao GC, BX S, Ao SJ, Zhang J, Wan B, Wang ZM, Ding JX, WJ Q, AD D (2014) Re–Os isotopic age of the Hongqiling Cu–Ni sulfide deposit in Jilin Province, NE China and its geological significance. Res Geol 64:247–261CrossRefGoogle Scholar
  40. Hanski E (2012) Evolution of the Palaeoproterozoic (2.50–1.95 Ga) non-orogenic magmatism in the eastern part of the Fennoscandian Shield. In: Melezhik VA, Prave AR, Hanski EJ, Fallick AE, Lepland A, Kump LR, Strauss H (eds) Reading the archive of Earth’s oxygenation. Volume 1: the Palaeoproterozoic of Fennoscandia as context for the Fennoscandian Arctic Russia—Drilling Early Earth Project. Springer, Berlin Heidelberg, pp. 179–245Google Scholar
  41. Hanski E, Walker RJ, Huhma H, Suominen I (2001) The Os and Nd isotopic systematics of the c. 2.44 Ga Akanvaara and Koitelainen mafic layered intrusions in northern Finland. Precam Res 109:73–102CrossRefGoogle Scholar
  42. Hanski E, Luo ZY, Oduro H, Walker RJ (2011) The Pechenga Ni-Cu sulfide deposits, northwestern Russia: a review with new constraints from the feeder dikes. Rev Econ Geol 17:145–162Google Scholar
  43. Heaman LM (1997) Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province. Geol 25:299–302CrossRefGoogle Scholar
  44. Heinonen JS, Luttinen AV, Wendy A, Bohrson WA (2016) Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica. Contrib Mineral Petrol 171:9CrossRefGoogle Scholar
  45. Horan MF, Walker RJ, Fedorenko VA, Czamanske GK (1995) Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources. Geochim Cosmochim Acta 59:5159–5168CrossRefGoogle Scholar
  46. Horan MF, Morgan JW, Walker RJ, Cooper RW (2001) Re–Os isotopic constraints on magma mixing in the peridotite zone of the Stillwater complex, Montana, USA. Contrib Mineral Petrol 141:446–457CrossRefGoogle Scholar
  47. Huhma H, Cliff RA, Perttunen V, Sakko M (1990) Sm–Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting in northern Finland. Contrib Mineral Petrol 104:369–379CrossRefGoogle Scholar
  48. Huhma H, Kontinen A, Mikkola P, Halkoaho T, Hokkanen T, Hölttä P, Juopperi H, Konnunaho J, Luukkonen E, Mutanen T, Peltonen P, Pietikäinen K, Pulkkinen A (2012) Nd isotopic evidence for Archaean crustal growth in Finland. Geol Surv Finland Spec Pap 54:176–213Google Scholar
  49. Iljina M, Hanski E (2005) Layered mafic intrusions of the Tornio–Näränkävaara belt. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. Developments in Precambrian geology 14. Elsevier Science B.V, Amsterdam, pp. 101–138CrossRefGoogle Scholar
  50. Iljina M, Maier WD, Karinen T (2015) PGE-(Cu-Ni) deposits of the Tornio-Näränkavaara belt of intrusions (Portimo, Penikat and Koillismaa). In: Maier WD, O’Brien H, Lahtinen R (eds) Mineral deposits of Finland. Elsevier, Amsterdam, pp. 133–162CrossRefGoogle Scholar
  51. Irvine TN (1975) Crystallisation sequences in the Muskox intrusion and other layered intrusions—II. Origin of chromitite layers and other similar deposits of other magmatic ores. Geochim Cosmochim Acta 39:991–1020CrossRefGoogle Scholar
  52. Kulikov VS, Bychkova YV, Kulikova VV, Ernst R (2010) The Vetreny Poyas (Windy Belt) subprovince of southeastern Fennoscandia: an essential component of the ca. 2.5–2.4 Sumian large igneous provinces. Precam Res 183:589–601CrossRefGoogle Scholar
  53. Kyläkoski M, Hanski E, Huhma H (2012) The Petäjäskoski Formation, a new lithostratigraphic unit in the Paleoproterozoic Peräpohja Belt, northern Finland. Bull Geol Soc Finl 84:85–120Google Scholar
  54. Lambert DD, Walker RJ, Morgan JW, Shirey SB, Carlson RW, Zientek ML, Lipin BR, Koski MS, Cooper RL (1994) Re–Os and Sm–Nd isotope geochemistry of the Stillwater Complex, Montana: implications for the petrogenesis of the J-M Reef. J Petrol 35:1717–1753CrossRefGoogle Scholar
  55. Lambert DD, Foster JG, Frick LR, Ripley EM, Zientek ML (1998) Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re–Os isotope system. Econ Geol 93:121–136CrossRefGoogle Scholar
  56. Lambert DD, Foster JG, Frick LR, Li C, Naldrett AJ (1999) Re–Os isotopic systematics of the Voisey’s Bay Ni–Cu–Co magmatic ore system, Labrador, Canada. Lithos 47:69–88CrossRefGoogle Scholar
  57. Lassiter JC, Byerly BL, Snow JE, Hellebrand E (2014) Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth Planet Sci Lett 403:178–187CrossRefGoogle Scholar
  58. Lauri LS, Rämö OT, Huhma H, Mänttäri I, Räsänen J (2006) Petrogenesis of silicic magmatism related to the 2.44 Ga rifting of Archean crust in Koillismaa, eastern Finland. Lithos 86:137–166Google Scholar
  59. Lauri LS, Mikkola P, Karinen T (2012) Early Paleoproterozoic felsic and mafic magmatism in the Karelian province of the Fennoscandian Shield. Lithos 151:74–82CrossRefGoogle Scholar
  60. Lehtonen M, O’Brien HE, Peltonen P, Johanson BS, Pakkanen LK (2004) Layered mantle at the Karelian Craton margin: P–T of mantle xenocrysts and xenoliths from the Kaavi-Kuopio kimberlites, Finland. Lithos 77:593–608CrossRefGoogle Scholar
  61. Lesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni-Cu-(PGE) ores at Kambalda, Western Australia. Can Mineral 39:421–446CrossRefGoogle Scholar
  62. Liu JG, Rudnick RL, Walker RJ, Gao S, FY W, Piccoli PM, Yuan HL, Xu WL, Xu YG (2011) Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochim Cosmochim Acta 75:3881–3902CrossRefGoogle Scholar
  63. Lorand JP, Schmidt G, Palme H, Kratz KL (2000) Highly siderophile element geochemistry of the Earth’s mantle: new data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies. Lithos 53:149–164CrossRefGoogle Scholar
  64. Ludwig KR (2001) Users manual for isoplot/Ex rev. 2.49. Berkeley Geochronological Center, Spec Publ:1aGoogle Scholar
  65. Maier WD, de Klerk L, Blaine J, Manyeruke T, Barnes S-J, Stevens MVA, Mavrogenes JA (2008) Petrogeneis of contact style mineralization in the northern lobe of the Bushveld Complex: comparison of the farms Rooiport, Townlands, Drenthe and Nonnenworth. Miner Depos 43:255–280CrossRefGoogle Scholar
  66. Maier WD, Barnes SJ, Groves DI (2013) The Bushveld Complex, South Africa: formation of platinum, palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Miner Depos 48:1–56CrossRefGoogle Scholar
  67. McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091CrossRefGoogle Scholar
  68. Meisel T, Walker RJ, Irving AJ, Lorand JP (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65:1311–1323CrossRefGoogle Scholar
  69. Mikkola P, Huhma H, Heilimo E, Whitehouse M (2011) Archean crustal evolution of the Suomussalmi district as part of the Kianta Complex, Karelia: constraints from geochemistry and isotopes of granitoids. Lithos 125:287–307CrossRefGoogle Scholar
  70. Mitrofanov FP, Smolkin VF (eds) (2004) Layered intrusions of the Monchegorsk ore region: petrology, mineralization, isotopic composition, deep structure, Part 2. Apatity, KSC RAS, 177 pp (in Russian)Google Scholar
  71. Mondal SK, Mathez EA (2007) Origin of the UG2 chromitite layer, Bushveld Complex. J Petrol 48:495–510CrossRefGoogle Scholar
  72. Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal Atom Spectrom 24:209–214CrossRefGoogle Scholar
  73. Nägler TF, Kramers JD (1998) Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. Precam Res 91:233–252CrossRefGoogle Scholar
  74. Naldrett AJ, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G (2012) The origin of chromitites and related PGE mineralization in the Bushveld Complex: new mineralogical and petrological constraints. Min Depos 47:209–232CrossRefGoogle Scholar
  75. Nier AO (1937) The isotopic constitution of osmium. Phys Rev 52:885–892CrossRefGoogle Scholar
  76. O’Driscoll B, Day JMD, Daly JS, Walker RJ, McDonough WF (2009) Rhenium–osmium isotopes and platinum-group elements in the Rum Layered Suite, Scotland: implications for Cr-spinel seam formation and the composition of the Iceland mantle anomaly. Earth Planet Sci Lett 286:41–51CrossRefGoogle Scholar
  77. O’Driscoll B, Emeleus CH, Donaldson CH, Daly JS (2010) Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: cumulate assimilation and in situ crystallisation in a deforming crystal mush. J Petrol 51:1171–1201CrossRefGoogle Scholar
  78. Pagé P, Barnes S-J, Bédard JH, Zientek ML (2012) In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chem Geol 302-303:3–15CrossRefGoogle Scholar
  79. Pagé P, Barnes S-J (2016) The influence of chromite on osmium, iridium, ruthenium and rhodium distribution during early magmatic processes. Chem Geol 420:51–68CrossRefGoogle Scholar
  80. Parkinson IJ, Hawkesworth CJ, Cohen AS (1998) Ancient mantle in a modern arc: osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science 281:2011–2013CrossRefGoogle Scholar
  81. Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59CrossRefGoogle Scholar
  82. Peltonen P, Huhma H, Tyni M, Shimizu N (1999) Garnet peridotite xenoliths from kimberlites of Finland: nature of the continental mantle at an Archaean craton–Proterozoic mobile belt transition. In: Gurney JJ et al. (eds) Proceedings of the 7th International Kimberlite Conference. Red Roof Design, Cape Town, pp. 664–676Google Scholar
  83. Peltonen P, Brügmann G (2006) Origin of layered continental mantle (Karelian craton, Finland): geochemical and Re–Os isotope constraints. Lithos 89:405–423CrossRefGoogle Scholar
  84. Peslier AH, Reisberg L, Ludden J (2000) Os isotopic systematics in mantle xenoliths; age constraints on the Canadian Cordillera lithosphere. Chem Geol 166:85–101CrossRefGoogle Scholar
  85. Perttunen V, Vaasjoki M (2001) U-Pb geochronology of the Peräpohja Schist Belt, northwestern Finland. In: Vaasjoki M (Ed.) Radiometric age determinations from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geol Surv Finl, Special Paper 33:45–84Google Scholar
  86. Pripachkin PV, Neradovsky YN, Fedotov ZA, Nerovich LI, Voytekhovsky YL, Chistjakova LD, Mansurova NA (2013) The Cu-Ni-PGE and Cr deposits of the Monchegorsk area, Kola Penisula, Russia. In: Hanski EJ, Maier WD (eds) Ni-Cr-PGE Deposits of Finland and the Kola Peninsula. Excursion Guidebook, 12th Biennial SGA Meeting, Uppsala, Sweden, 90 ppGoogle Scholar
  87. Puchtel IS, Hofmann AW, Mezger K, Shchipansky AA, Kulikov VS, Kulikova VV (1996) Petrology of a 2.41 Ga remarkably fresh komatiitic basalt lava lake in Lion Hills, central Vetreny Belt, Baltic Shield. Contrib Mineral Petrol 124:273–290CrossRefGoogle Scholar
  88. Puchtel IS, Haase KM, Hofmann AW, Chauvel C, Kulikov VS, Garbe-Schönberg CD, Nemchin AA (1997) Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochim Cosmochim Acta 61:1205–1222CrossRefGoogle Scholar
  89. Puchtel IS, Brügmann GE, Hofmann AW (1999) Precise Re–Os mineral isochron and Pb–Nd–Os isotope systematics of a mafic–ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet Sci Lett 170:447–461CrossRefGoogle Scholar
  90. Puchtel IS, Brügmann GE, Hofmann AW, Kulikov VS, Kulikova VV (2001) Os-isotope systematics of komatiitic basalts from the Vetreny belt, Baltic Shield: evidence for a chondritic source of the 2.45 Ga plume. Contrib Mineral Petrol 140:588–599CrossRefGoogle Scholar
  91. Puchtel IS, Brandon A, Humayun M (2004) Precise Pt–Re–Os isotope systematics of the mantle from 2.7-Ga komatiites. Earth Planet Sci Lett 224:157–174CrossRefGoogle Scholar
  92. Puchtel IS, Humayun M (2001) Platinum group element fractionation in a komatiitic basalt lava lake. Geochim Cosmochim Acta 65:2979–2993CrossRefGoogle Scholar
  93. Rankenburg K, Lassiter JC, Brey G (2004) Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain—constraints on magma genesis and crustal contamination. Contrib Mineral Petrol 147:129–144CrossRefGoogle Scholar
  94. Reisberg L, Lorand JP (1995) Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376:159–162CrossRefGoogle Scholar
  95. Richard P, Shimizu N, Allègre CA (1976) 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278CrossRefGoogle Scholar
  96. Richardson SH, Shirey SB (2008) Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453:910–913CrossRefGoogle Scholar
  97. Ripley EM, Park YR, Li C, Naldrett AJ (1999) Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Canada. Lithos 47:53–68CrossRefGoogle Scholar
  98. Ripley EM, Park YR, Lambert DD, Frick LR (2001) Re–Os isotopic variations in carbonaceous pelites hosting the Duluth Complex: implications for metamorphic and metasomatic processes associated with mafic magma chambers. Geochim Cosmochim Acta 65:2965–2978CrossRefGoogle Scholar
  99. Schaefer BF, Parkinson IJ, Hawkesworth CJ (2000) Deep mantle plume osmium isotope signature from West Greenland Tertiary picrites. Earth Planet Sci Lett 175:105–118CrossRefGoogle Scholar
  100. Schoenberg R, Kruger FJ, Nägler TF, Meisel T, Kramers JD (1999) PGE enrichment in chromitite layers and the Merensky Reef of the Bushveld complex; a Re–Os and Rb–Sr isotope study. Earth Planet Sci Lett 172:49–64CrossRefGoogle Scholar
  101. Sharkov EV, Chistyakov AV (2012) The Early Paleoproterozoic Monchegorsk layered mafite–ultramafite massif in the Kola Peninsula: geology, petrology, and ore potential. Petrology 20:607–639CrossRefGoogle Scholar
  102. Shirey SB (1997) Re-Os isotopic compositions of Midcontinent rift system picrites: implications for plume–lithosphere interaction and enriched mantle sources. Can J Earth Sci 34:489–503CrossRefGoogle Scholar
  103. Shirey SB, Walker RJ (1998) Re–Os isotopes in cosmochemistry and high temperature geochemistry. Ann Rev Earth and Planet Sci 26:423–500CrossRefGoogle Scholar
  104. Smolkin VF, Fedotov ZA, Neradovsky YN, Bayanova TB et al. (2004) Layered intrusions of the Monchegorsk ore region: petrology, mineralization, isotope features and deep structure. In: Mitrofanov FP, Smolkin VF (Eds) Part 1 Apatity, Kola Science Centre RAS:177 (in Russian)Google Scholar
  105. Spandler C, Mavrogenes J, Arculus R (2005) Origin of chromitites in layered intrusions: evidence from chromite-hosted melt inclusions from the Stillwater Complex. Geol 33:893–896CrossRefGoogle Scholar
  106. Stepanova AV, Salnikova EB, Samsonov AV, Egorovaa SV, Larionova YO, Stepanov YO (2014) The 2.31 Ga mafic dykes in the Karelian Craton, eastern Fennoscandian Shield: U–Pb age, source characteristics and implications for continental break-up processes. Precam Res 259:43–57CrossRefGoogle Scholar
  107. Vogel DC, Vuollo JI, Alapieti TT, James RS (1998) Tectonic, stratigraphic, and geochemical comparisons between ca. 2500–2440 Ma mafic igneous events in the Canadian and Fennoscandian Shields. Precam Res 92:89–116CrossRefGoogle Scholar
  108. Volkening J, Walczyk TG, Heumann K (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int J Mass Spect Ion Proc 105:147–159CrossRefGoogle Scholar
  109. Voordouw R, Gutzmer J, Beukes NJ (2009) Intrusive origin for Upper Group (UG1, UG2) stratiform chromitite seams in the Dwars River area, Bushveld Complex, South Africa. Mineral Petrol 97:75–94CrossRefGoogle Scholar
  110. Vuollo J, Huhma H (2005) Paleoproterozoic mafic dikes in NE Finland. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. Developments in Precambrian geology 14. Elsevier Science B.V, Amsterdam, pp. 195–236CrossRefGoogle Scholar
  111. Walker RJ, Carlson RW, Shirey SB, Boyd FR (1989) Os, Sr, Nd, and Pb isotope systematics of Southern African peridotite xenoliths; implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta 53:1583–1595CrossRefGoogle Scholar
  112. Walker RJ, Morgan JW, Hanski EJ, Smolkin VF (1997) Re-Os systematics of early Proterozoic ferropicrites, Pechenga Complex, Russia: evidence for ancient 187Os enriched plumes. Geochim Cosmochim Acta 61:3145–3160CrossRefGoogle Scholar
  113. Wang CY, Zhou M-F, Qi L (2007) Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: mantle sources, crustal contamination and sulfide segregation. Chem Geol 243:317–343CrossRefGoogle Scholar
  114. Xu XS, Griffin WL, O’Reilly SY, Pearson NJ, Geng HY, Zheng JP (2008a) Re–Os isotopes of sulfides in mantle xenoliths from eastern China: progressive modification of lithospheric mantle. Lithos 102:43–64CrossRefGoogle Scholar
  115. Xu YG, Blusztajn J, Ma JL, Suzuki K, Liu JF, Hart SR (2008b) Late Archean to early Proterozoic lithospheric mantle beneath the western North China craton: Sr–Nd–Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos 102:25–42CrossRefGoogle Scholar
  116. Yang SH, Zhou MF, Lightfoot PC, Malpas J, WJ Q, Zhou JB, Kong DY (2012) Selective crustal contamination and decoupling of lithophile and chalcophile element isotopes in sulfide-bearing mafic intrusions: an example from the Jingbulake intrusion, Xinjiang, NW China. Chem Geol 302–303:106–118CrossRefGoogle Scholar
  117. Yang SH, Maier WD, Lahaye Y, O’Brien H (2013a) Strontium isotope disequilibrium of plagioclase in the Upper Critical Zone of the Bushveld Complex: evidence for mixing of crystal slurries. Contrib Mineral Petrol 166:959–974CrossRefGoogle Scholar
  118. Yang AY, Zhao TP, Zhou MF, Deng XG, Wang GQ, Li J (2013b) Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: constraints on the assimilation and fractional crystallization (AFC) processes. Lithos 179:28–35CrossRefGoogle Scholar
  119. Yang SH, Zhou MF, Lightfoot PC, JF X, Wang CY, Jiang CY, Qu WJ (2014) Re–Os isotope and platinum-group element geochemistry of the Pobei Ni–Cu sulfide-bearing mafic–ultramafic complex in the northeastern part of the Tarim Craton. Miner Depos 49:381–397CrossRefGoogle Scholar
  120. Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of sub-continental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol 155:271–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sheng-Hong Yang
    • 1
    Email author
  • Eero Hanski
    • 1
  • Chao Li
    • 2
    Email author
  • Wolfgang D. Maier
    • 3
  • Hannu Huhma
    • 4
  • Artem V. Mokrushin
    • 5
  • Rais Latypov
    • 6
  • Yann Lahaye
    • 4
  • Hugh O’Brien
    • 4
  • Wen-Jun Qu
    • 2
  1. 1.Oulu Mining SchoolUniversity of OuluOuluFinland
  2. 2.Key Laboratory of Re-Os Isotope GeochemistryChinese Academy of Geological SciencesBeijingChina
  3. 3.School of Ocean SciencesUniversity of CardiffCardiffUK
  4. 4.Geological Survey of FinlandEspooFinland
  5. 5.Geological Institute, Kola Research CenterRussian Academy of SciencesApatityRussia
  6. 6.School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations