Advertisement

Mineralium Deposita

, Volume 52, Issue 3, pp 383–404 | Cite as

A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

  • Robin-Marie BellEmail author
  • Jochen Kolb
  • Tod Earle Waight
  • Leon Bagas
  • Tonny B. Thomsen
Article

Abstract

Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland’s only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783–1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

Keywords

Gold mineralisation Orogenic gold Multi-stage hydrothermal alteration Ketilidian Orogen South Greenland 

Notes

Acknowledgements

This paper was submitted as part of a Ph.D. thesis undertaken by RMB on the Nalunaq gold deposit, funded by the Geological Survey of Denmark and Greenland (GEUS) and Department of Geoscience and Natural Resource Management at the University of Copenhagen. Thanks are given to Simon Olsen for providing recent information on the status of Nalunaq gold mine. Mojagan Alaei and Olga Nielsen of GEUS are acknowledged for their assistance in preparing samples, and the staff at Curtin University are thanked for assistance with the preparation of zircon mounts. Thanks are also given to the Carlsberg Foundation, for funding project 2012_01_0081 for field work and zircon geochronology. Reviewers, Denis M. Schlatter and Ferenc Molnar, and editors, Robert Moritz and Georges Beaudoin, provided helpful comments which have greatly improved the quality of the manuscript. Finally, the staff of Angel Mining are thanked for their onsite assistance when collecting field samples and for sharing their extensive database of knowledge.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

126_2016_667_MOESM1_ESM.xlsx (30 kb)
ESM 1 Table S1 Data tables of SHRIMP U/Pb zircon geochronology from granite samples in the Kirskespir valley. (XLSX 29 kb)
126_2016_667_MOESM2_ESM.xlsx (351 kb)
ESM 2 Table S2 Data tables of LA-ICPMS U/Pb titanite geochronology from hydrothermal alteration zones in Nalunaq gold deposit. (XLSX 350 kb)

References

  1. Bateman RJ, Hagemann SG, McCuaig TC, Swager CP (2001) Protracted gold mineralization throughout Archaean orogenesis in the Kalgoorlie camp, Yilgarn Craton, Western Australia: structural, mineralogical, and geochemical evolution. In: Hagemann S, Neumayr P, Witt WK (eds) World-class gold camps and deposits in the Eastern Yilgarn Craton, Western Austarlia, with special emphasis on the Eastern Goldfieds Province. Geological Survey of Western Australia, Record 17:63–98Google Scholar
  2. Bark G, Weihed P (2012) Geodynamic settings for Paleoproterozoic gold mineralisation in the Svecofennian domain: a tectonic model for the Fäboliden orogenic gold deposit, northern Sweden. Ore Geol Rev 48:403–412. doi: 10.1016/j.oregeorev.2012.05.007 CrossRefGoogle Scholar
  3. Beaudoin G, Pitre D (2005) Stable isotope geochemistry of the Archean Val-d‘Or (Canada) orogenic gold vein field. Miner Deposita 40:59–75CrossRefGoogle Scholar
  4. Bell R-M (2012) Controls on 3D mineralogical and grade variations in the Nalunaq gold mine, south Greenland. Dissertation, University of LeicesterGoogle Scholar
  5. Bell R-M, Kolb J (2013) Various alteration stages in the Nalunaq gold deposit, south Greenland. In: Jonsson E et al (eds) Mineral deposit research for a high-tech world. Proceedings 12th Biennial SGA Meeting, Uppsala, Sweden, pp 1093–1096Google Scholar
  6. Benning LG, Seward TM (1996) Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bar. Geochim Cosmochim Ac 60:1849–1871. doi: 10.1016/0016-7037(96)00061-0 CrossRefGoogle Scholar
  7. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140. doi: 10.1016/j.chemgeo.2004.01.003 CrossRefGoogle Scholar
  8. Bondesen E (1970) The stratigraphy and deformation of the Precambrian rocks of the Grænseland area, south-west Greenland. Geol Surv Den Greenl 86:1–236, GEUS report number: 22238Google Scholar
  9. Bridgwater D, Escher A, Watterson J (1973) Tectonic displacements and the thermal activity in two contrasting Proterozoic mobile belts from Greenland. PhilosT Roy Soc A 273:513–533CrossRefGoogle Scholar
  10. Brown PE, Bowman JR, Kelly WC (1985) Petrologic and stable isotope constraints on the source and evolution of skarn-forming fluids at Pine Creek, California. Econ Geol 80:72–95CrossRefGoogle Scholar
  11. Bucci LA, Hagemann SG, Groves DI, Standing JG (2002) The Archean Chalice gold deposit: a record of complex, multistage, high-temperature hydrothermal activity and gold mineralisation associated with granitic rocks in the Yilgarn Craton, Western Australia. Ore Geol Rev 19:23–67. doi: 10.1016/S0169-1368(01)00032-4 CrossRefGoogle Scholar
  12. Chadwick B, Erfurt P, Frith RA, Neilsen TFD, Schønwandt HK, Stendal H (1994) Re-appraisal of the Ikermit supracrustal suit of the Ketilidian border zone in South-East Greenland. Grønlands Geologiske Undersøgelse, Rapport 163:23–31, GEUS report number: 22500Google Scholar
  13. Chadwick B, Garde AA (1996) Palaeoproterozoic oblique plate convergence in South Greenland: a reappraisal of the Ketilidian Orogen. In: Brewer TS (ed) Precambrian crustal evolution in the North Atlantic region, Geol Soc Spec Pub 112: 179–196Google Scholar
  14. Chadwick B, Garde AA, Grocott J, McCaffrey KJW, Hamilton MA (2000) Ketilidian structure and the rapakivi suite between Lindenow Fjord and Kap Farvel, South-East Greenland. Geol Surv Den Greenl 186:50–59Google Scholar
  15. Claoué-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren WA, Kent DV, Aubrey M-P, Hardenbol J (ed) Geochronology time scales and global stratigraphic correlation. SEPM Spec Pub 54:3–21Google Scholar
  16. Compston W, Williams I, Meyer C (1984) U‐Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass‐resolution ion microprobe. J Geophys Res- Sol Ea (1978–2012) 89:B525–B534CrossRefGoogle Scholar
  17. Corrigan D, Galley AG, Pehrsson S (2007) Tectonic evolution and metallogeny of the southwestern Trans-Husdon Orogen. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5:881–902Google Scholar
  18. Craw D, Upton P, MacKenzie DJ (2009) Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zeal J Geol and Geop 52:11–26CrossRefGoogle Scholar
  19. Doublier MP, Thébaud N, Wingate MTD, Romano SS, Kirkland CL, Gessner K, Mole DR, Evans N (2014) Structure and timing of Neoarchean gold mineralization in the Southern Cross district (Yilgarn Craton, Western Australia) suggest leading role of late low-Ca I-type granite intrusions. J Struct Geol 67:205–221. doi: 10.1016/j.jsg.2014.02.009 CrossRefGoogle Scholar
  20. Dubé B, Gosselin P (2007) Greenstone-hosted quartz-carbonate vein deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, vol 5. Mineral Deposits Division, Special Publication, Geological Association of Canada, pp 49–73Google Scholar
  21. Dziggel A, Otto A, Kisters AFM, Meyer FM (2007) Tectono-metamorphic controls on Archaean gold mineralization in the Barberton greenstone belt, South Africa: an example from the New Consort gold mine. In: van Kranendonk MJ, Smithies RH, Bennet V (eds) Earth’s oldest rocks. Developments in Precambrian geology. Elsevier, Amsterdam, pp 699–727Google Scholar
  22. Eilu P, Sorjonen-Ward P, Nurmi P, Niiranen T (2003) A review of gold mineralization styles in Finland. Econ Geol 98:1329–1353CrossRefGoogle Scholar
  23. Eilu P, Weihed P (2005) 8—2: Fennoscandian Shield—orogenic gold deposits. In: Blundell D, Armdt N, Cobbold PR, Heinrich C (eds) Geodynamics and ore deposit evolution in Europe, vol 27. Elsevier, Amsterdam, p 326Google Scholar
  24. Eisenlohr BN, Groves D, Partington GA (1989) Crustal-scale shear zones and their significance to Archaean gold mineralization in Western Australia. Miner Deposita 24:1–8. doi: 10.1007/BF00206714 CrossRefGoogle Scholar
  25. Friend CRL, Nutman AP (2001) U–Pb zircon study of tectonically bounded blocks of 2940–2840 Ma crust with different metamorphic histories, Paamiut region, South-West Greenland: implications for the tectonic assembly of the North Atlantic craton. Precambrian Res 105:143–164. doi: 10.1016/S0301-9268(00)00109-1 CrossRefGoogle Scholar
  26. Garde AA, Chadwick B, Grocott J, Hamilton MA, McCaffrey KJW, Swager CP (2002a) Mid-crustal partitioning and attachment during oblique convergence in an arc system, Palaeoproterozoic Ketilidian orogen, southern Greenland. J Geol Soc London 159:247–261CrossRefGoogle Scholar
  27. Garde AA, Hamilton MA, Chadwick B, Grocott J, McCaffrey KJW (2002b) The Ketilidian orogen of South Greenland: geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Can J Earth Sci 39:765–793CrossRefGoogle Scholar
  28. Garde AA, Venance K, Swager CP (1998) HT-LP metamorphism in the Psammite and Pelite zones of the c. 1800 Ma Ketilidian Orogen, southern East Greenland. Paper presented at the Geological Association of Canada–Mineralogical Association of Canada–L’Association professionelles des géologues et des géophysiciens du Québec (GAC-MAC-APGGQ) meeting, Québec City, Canada, p A-62Google Scholar
  29. Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJ, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100th anniversary volume:407–450Google Scholar
  30. Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75CrossRefGoogle Scholar
  31. Goodenough KM, Krabbendam M, Shaw RA, Crowley QG (2013) Making and breaking Columbia (Nuna) formation of a critical metal province? A North Atlantic view. Building Strong Continents, 2–4 September 2013 University of Portsmouth, U.K. Programme and Abstracts, pp 44Google Scholar
  32. Gowen J, Christiansen O, Grahl-Madsen L, Pederson J, Petersen JS, Robyn TL (1993) Discovery of the Nalunaq gold deposit, Kirkespirdalen, SW Greenland. Int Geol Rev 35:1001–1008CrossRefGoogle Scholar
  33. Grammatikopoulos TA, Porritt L, Petersen JS, Christensen K (2004) Mineralogical characterisation and process mineralogy of gold-bearing rocks from the Nalunaq gold deposit, Greenland. T I Min Metall B 113:197–203Google Scholar
  34. Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit type. Ore Geol Rev 13:7–27CrossRefGoogle Scholar
  35. Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol 98:1–29Google Scholar
  36. Guy K (1993) Cyprus Greenland Corporation, Nunaoil A/S, Greenland Project. Nalunaq, Nanisiaq and Nanortalik joint ventures summary report on exploration—1993. Internal report, Cyprus Greenland Corporation and Nunaoil A/S, pp 15, app 3, plates 19. GEUS report number: 21358Google Scholar
  37. Hamilton M (1997) Synopsis of new U/Pb geochronological results from the Ketilidian orogen, South Greenland. In: Wardle RJ, Hall J (eds) Eastern Canadian Shield Onshore–Offshore Transect (ECSOOT), Report of 1997 Transect Meeting, vol 61. Lithoprobe Report, University of British Columbia, pp 118–134Google Scholar
  38. Hart CJR, Goldfarb RJ (2005) Distinguishing intrusion-related from orogenic gold systems. Proceedings of the 2005 New Zealand Minerals Conference, Auckland, pp 125–133Google Scholar
  39. Hellstrom, J, Paton C, Woodhead J, Hergt J (2008) Iolite: software for spatially resolved LA- (quad and MC) ICPMS analysis. In: Sylvester P (ed) Laser ablation ICP–MS in the earth sciences: current practices and outstanding issues. Mineralogical Association of Canada short course series 40:343–348Google Scholar
  40. Higgins AK (1970) The stratigraphy and structure of the Ketilidian rock of Midternæs, south-west Greenland. Geol Sur Den Greenl 87:1–105, GEUS report number: 22239Google Scholar
  41. Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62CrossRefGoogle Scholar
  42. Hutchinson RW (1993) A multi-stage, multi-process genetic hypothesis for greenstone-hosted gold lodes. Ore Geol Rev 8:349–382. doi: 10.1016/0169-1368(93)90022-Q CrossRefGoogle Scholar
  43. Hutton DHW, Dempster TJ, Brown PE, Becker SD (1990) A new mechanism of granite emplacement: intrusion in active extensional shear zones. Nature 343:452–455CrossRefGoogle Scholar
  44. Kaltoft K (2000) The geology and genesis of the Palaeproterozioc shear zone hosted gold deposit Nalunaq, South Greenland. Dissertation, University of AarhusGoogle Scholar
  45. Kaltoft K, Schlatter DM, Kludt L (2000) Geology and genesis of Nalunaq Palaeoproterozoic shear zone-hosted gold deposit. South Greenland T I Min Metall B 109:23–33Google Scholar
  46. Kerrich R, Cassidy KF (1994) Temporal relationships of lode gold mineralisation to accretion, magmatism, metamorphism and deformation—Archean to present: a review. Ore Geol Rev 9:263–310. doi: 10.1016/0169-1368(94)90001-9 CrossRefGoogle Scholar
  47. Ketchum JWF, Culshaw NG, Barr SM (2002) Anatomy and orogenic history of a Paleoproterozoic accretionary belt: the Makkovik Province, Labrador, Canada. Can J Earth Sci 39:713–730CrossRefGoogle Scholar
  48. Kishida A, Kerrich R (1987) Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean Lode Gold Deposit, Kirkland Lake, Ontario. Econ Geol 82:649–690CrossRefGoogle Scholar
  49. Kisters AFM, van Hinsberg VJ, Szilas K (2012) Geology of an Archaean accretionary complex—the structural record of burial and return flow in the Tartoq Group of South West Greenland. Precambrian Res 220:107–122CrossRefGoogle Scholar
  50. Kjølsen T (1999) Exploration in the Nalunaq concession, South Greenland 1998, Adit Reportm Exploration Licence 04/97. Internal report, Nunaoil A/S, pp 30. GEUS report number: 21683Google Scholar
  51. Kolb J, Kisters AFM, Hoernes S, Meyer FM (2000) The origin of fluids and nature of fluid-rock interaction in auriferous mylonites of the Renco Mine, southern Zimbabwe. J Struct Geol 22:811–829CrossRefGoogle Scholar
  52. Kolb J, Hellmann A, Rogers A, Sindern S, Vennemann TW, Böttcher ME, Meyer FM (2004a) The role of a transcrustal shear zone in orogenic gold mineralization at the Ajjanahalli Mine, Dharwar Craton, South India. Econ Geol 99:743–759CrossRefGoogle Scholar
  53. Kolb J, Rogers A, Meyer FM, Vennemann TW (2004b) Development of fluid conduits in the auriferous shear zones of the Hutti Gold Mine, India: evidence for spatially and temporally heterogeneous fluid flow. Tectonophysics 378:65–84CrossRefGoogle Scholar
  54. Kolb J, Rogers A, Meyer M (2005) Relative timing of deformation and two-stage gold mineralization at the Hutti Mine, Dharwar Craton, India. Miner Deposita 40:156–174CrossRefGoogle Scholar
  55. Kolb J, Bartels A, Borst AM, Bohse H, Bell R-M (2013) Geological excursion to South Greenland. Paper presented at the 12th SGA Biennial Meeting: ‘Mineral deposit research for a high tech world’, Uppsala, Sweden, p 60Google Scholar
  56. Lang JR, Baker T, Hart CJR, Mortensen JK (2000) An exploration model for intrusion-related gold systems. Society of Economic Geologists Newsletter 40:6–15Google Scholar
  57. Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. No. 4Google Scholar
  58. Ludwig KR (2008) Squid2: a user manual. Berkeley Geochronology Center Special Publication, pp. 77Google Scholar
  59. McCuaig TC, Kerrich R (1998) P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453CrossRefGoogle Scholar
  60. Meinert LD (1998) A review of skarns that contain gold. In: Lentz DR (ed) Mineralized intrusion-related skarn systems, short course volume 26. Mineralogical Association of Canada short course, pp 359–414Google Scholar
  61. Meinert LD (2000) Gold in skarns related to epizonal intrusions. In: Hagemann S, Brown PE (ed) Gold in 2000. Rev Econ Geol 13:347-375Google Scholar
  62. Micklethwaite S, Sheldon HA, Baker T (2010) Active fault and shear processes and their implications for mineral deposit formation and discovery. J Struct Geol 32:151–165CrossRefGoogle Scholar
  63. Mikucki EJ (1998) Hydrothermal transport and depositional processes in Archean lode-gold systems: a review. Ore Geol Rev 13:307–321CrossRefGoogle Scholar
  64. Mikucki EJ, Ridley JR (1993) The hydrothermal fluid of Archæan lode-gold deposits at different metamorphic grades: compositional constraints from ore and wallrock alteration assemblages. Miner Deposita 28:469–481CrossRefGoogle Scholar
  65. Mueller AG (1991) The Savage Lode magnesian skarn in the Marvel Loch gold–silver mine, Southern Cross greenstone belt, Western Australia. Part 1: structural setting, petrography, and geochemistry. Can J Earth Sci 28:659–685. doi: 10.1139/e91-059 CrossRefGoogle Scholar
  66. Mueller AG (1997) The Nevoria gold skarn deposit Archean iron-formation, Southern Cross greenstone belt, Western Australia: I. Tectonic setting, petrography, and classification. Econ Geol 92:181–209CrossRefGoogle Scholar
  67. Mueller W, Dostal J, Stendal H (2002) Inferred Palaeoproterozoic arc rifting along a consuming plate margin: insights from the stratigraphy, volcanology and geochemistry of the Kangerluluk sequence, southeast Greenland. Int J Earth Sci 91:209–230CrossRefGoogle Scholar
  68. Mueller WU, Garde AA, Stendal H (2000) Shallow-water, eruption-fed, mafic pyroclastic deposits along a Paleoproterozoic coastline: Kangerluluk volcano-sedimentary sequence, southeast Greenland. Precambrian Res 101:163–192. doi: 10.1016/S0301-9268(99)00087-X CrossRefGoogle Scholar
  69. Mueller AG, Nemchin AA, Frei R (2004) The Nevoria gold skarn deposit, Southern Cross greenstone belt, Western Australia: II. Pressure-temperature-time path and relationship to postorogenic granites. Econ Geol 99:453–478CrossRefGoogle Scholar
  70. Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A, Valley J (2008) Zircon M257—a homogeneous natural reference material for the ion microprobe U‐Pb analysis of zircon. Geostand Geoanal Res 32:247–265CrossRefGoogle Scholar
  71. Neumayr P, Cabri LJ, Groves DI, Mikucki EJ, Jackman J (1993) The mineralogical distribution of gold and relative timing of gold mineralization in two Archean settings of high metamorphic grade in Australia. Can Mineral 31:711–725Google Scholar
  72. Nörtemann MF-J, Mücke A, Weber K, Meinert LD (2000) Mineralogy of the Navachab skarn deposit, Namibia: an unusual Au-bearing skarn in high-grade metamorphic rocks. Communications of the Geological Survey of Namibia 12:149–156Google Scholar
  73. Olsen HK, Petersen JS (1995) Gold exploration in southern Nanortalik peninsula (Lake 410 - Usuk - Kirkespir Ridge - Nalunaq), South Greenland. Internal report, Nunaoil A/S, 58 pp, 5 app, 6 plates. GEUS report number: 21412Google Scholar
  74. Otto A, Dziggel A, Kisters AFM, Meyer FM (2007) The New Consort Gold Mine, Barberton greenstone belt, South Africa: orogenic gold mineralization in a condensed metamorphic profile. Miner Deposita 42:715–735. doi: 10.1007/s00126-007-0135-5 CrossRefGoogle Scholar
  75. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophy Geosy 11:1–36CrossRefGoogle Scholar
  76. Paton C, Hellstrom JC, Paul P, Woodhead JD, Hergt JM (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal Atom Spectrom 26:2508–2518CrossRefGoogle Scholar
  77. Petersen JS (1993) Results of geological investigation on gold mineralization in the Nalunaq Area, Nanortalik Peninsula, SW Greenland. NunaOil A/S, pp 54. GEUS report number: 21357Google Scholar
  78. Petersen JS, Kaltoft K, Schlatter D (1997) The Nanortalik gold district in South Greenland. In: Papunen H (ed) Mineral deposits: research and exploration. Where do they meet? Balkema, Rotterdam, pp 285–288Google Scholar
  79. Petersen JS, Olsen HK (1995) Gold exploration in Ippatit area - Søndre Sermilik - Amitsoq island, South Greenland. Internal report, Nunaoil A/S, 25 pp, 5 app, 6 plates. GEUS report number: 21424Google Scholar
  80. Petrus JA, Kamber BS (2012) VisualAge: a novel approach to U-Pb LA-ICP-MS geochronology. Geostand Geoanal Res 36:247–270CrossRefGoogle Scholar
  81. Pitcairn I, Craw D, Teagle DH (2015) Metabasalts as sources of metals in orogenic gold deposits. Miner Deposita 50:373–390. doi: 10.1007/s00126-014-0547-y CrossRefGoogle Scholar
  82. Porritt L (2000) Alterations surrounding the main vein of the Nalunaq Gold Deposit, South Greenland. Dissertation, University of Exeter. GEUS report number: 22102Google Scholar
  83. Ravna K (2000) The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J Metamorph Geol 18:211–219CrossRefGoogle Scholar
  84. Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models. In: Hagemann S, Brown PE (ed) Gold in 2000. Rev Econ Geol 13:141-162Google Scholar
  85. Robert F, Boullier A-M, Firdaous K (1995) Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. J Geophys Res 100:12861–12879CrossRefGoogle Scholar
  86. Rogers AJ, Kolb J, Meyer FM, Vennemann TW (2013) Two stages of gold mineralisation at Hutti mine, India. Miner Deposita 48:99–114CrossRefGoogle Scholar
  87. Saalmann K, Mänttäri I, Peltonen P, Whitehouse M, Grönholm P, Talikka M (2010) Geochronology and structural relationships of mesothermal gold mineralisation in the Palaeoproterozoic Jokisivu prospect, southern Finland. Geol Mag 147:551–569CrossRefGoogle Scholar
  88. Saalmann K, Mänttäri I, Ruffet G, Whitehouse M (2009) Age and tectonic framework of structurally controlled Palaeoproterozoic gold mineralization in the Häme belt of southern Finland. Precambrian Res 174:53–77CrossRefGoogle Scholar
  89. Schlatter DM, Berger A, Christiansen O (2013) Geological, petrographical and geochemical characteristics of the granitoid hosted amphibolite ridge gold occurrence in South Greenland. In: Jonsson E et al (eds) Mineral deposit research for a high-tech world. Proceedings of the12th Biennial SGA Meeting, Uppsala, Sweden, pp 1189–1192Google Scholar
  90. Schlatter DM, Hughes JW (2014) The gold potential of South East Greenland: new insights of the eastern extension of the > 150 km Nanortalik gold belt. In: Reusser E and Pilet S (ed) Abstract volume, 12th Swiss Geoscience Meeting, Fribourg, 21st–22nd November 2014, pp 81–82Google Scholar
  91. Schlatter DM, Hughes JW, Christiansen O (2015) Auf Goldsuche in Grönland/A la recherche de l’or groenlandais, vol 2. Das Magazin der Schweizer Geowissenschaften, GeoPanorama, pp 19–24Google Scholar
  92. Schlatter DM, Kolb J (2011) Host rock composition and hydrothermal alteration as tools for exploration in the Nanortalik gold district. In: Barra F et al (eds) Let’s talk ore deposits. Proceedings of the 11th Biennial SGA Meeting, Antofagasta, Chile, pp 544–546Google Scholar
  93. Schlatter DM, Olsen SD (2011) The Nalunaq Gold Mine: a reference sample collection and compilation and interpretation of chemical data. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2011/31Google Scholar
  94. Steenfelt A, Kolb J, Trane K (2016) Metallogeny of South Greenland: a review of geological evolution, mineral occurrences and geochemical exploration data. Ore Geol Rev 77:197–245CrossRefGoogle Scholar
  95. Stendal H, Frei R (2000) Gold occurrences and lead isotopes in Ketilidian Mobile Belt, South Greenland. T I Min Metall B 109:6–13Google Scholar
  96. Stendal H, Mueller W, Birkedal N, Esben H, Østergaard C (1997) Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geo Surv Den Greenl 176:66–74Google Scholar
  97. St-Onge MR, van Gool JAM, Garde AA, Scott DJ (2009) Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogen. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. Geol Soc Spec Publ London 318:193–235Google Scholar
  98. Swager C, Chadwick C, Frisch T, Garde A, Schønwandt H, Stendal H, Thomassen B (1995) Geology of the Lindenow Fjord-Kangerliluk area, South-East Greenland: preliminary results of Suprasyd 1994. Geological Survey of Greenland: Open File Series 95/6Google Scholar
  99. Szilas K, van Hinsberg VJ, Kisters AFM, Hoffmann JE, Windley BF, Kokfelt TF, Scherstén A, Frei R, Rosing MT, Münker C (2013) Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland. Gondwana Res 23:436–451CrossRefGoogle Scholar
  100. Thomsen TB, Bell R-M, Waight TE, Kolb J (2015) Titanite from Nalunaq Gold Mine, Greenland—potential new reference material for in situ single grain titanite U/Pb geochronology. Proceedings of the 25th anniversary Goldschmidt meeting, Prague, Czech Republic, p 3125Google Scholar
  101. Tooth B, Brugger J, Ciobanu C, Liu W (2008) Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology 36:815–818CrossRefGoogle Scholar
  102. Weinberg RF, Hodkiewicz PF, Groves DI (2004) What controls gold distribution in Archean terranes? Geology 32:545–548CrossRefGoogle Scholar
  103. Wetherill G (1963) Discordant uranium‐lead ages: 2. Disordant ages resulting from diffusion of lead and uranium. J Geophys Res 68:2957–2965CrossRefGoogle Scholar
  104. Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272CrossRefGoogle Scholar
  105. Windley BF (1991) Early Proterozoic collision tectonics, and rapakivi granites as intrusions in an extensional thrust-thickened crust: the Ketilidian orogen, South Greenland. Tectonophysics 195:1–10CrossRefGoogle Scholar
  106. Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth-Sci Rev 93:1–30. doi: 10.1016/j.earscirev.2008.12.001 CrossRefGoogle Scholar
  107. Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice-Hall, New JerseyGoogle Scholar
  108. Witt-Nilsson P (1999) Nalunaq Gold Vein (or) there’s GOLD in them thar Greenland hills. Rosmarus Consulting, Uppsala, Sweden, p 28, GEUS report number: 21739Google Scholar
  109. Wulff K, Dziggel A, Kolb J, Vennemann TW, Böttcher ME, Meyer FM (2010) Origin of mineralizing fluids of the sediment-hosted Navachab gold mine, Namibia: constraints from stable (O, H, C, S) isotopes. Econ Geol 105:285–302CrossRefGoogle Scholar
  110. Yardley BW, Cleverley JS (2015) The role of metamorphic fluids in the formation of ore deposits. In: Jenkin GRT, Lusty PAJ, McDonald I, Smith MP, Boyce AJ, Wilkinson JJ (eds) Ore deposits in an evolving earth. Geol Soc Spec Publ London 393:117–134Google Scholar
  111. Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci Rev 67:91–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Robin-Marie Bell
    • 1
    • 2
    Email author
  • Jochen Kolb
    • 1
    • 2
  • Tod Earle Waight
    • 2
  • Leon Bagas
    • 3
  • Tonny B. Thomsen
    • 1
  1. 1.Department of Petrology and Economic GeologyGeological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  2. 2.Department of Geosciences and Natural Resource Management (Geology Section)University of CopenhagenCopenhagen KDenmark
  3. 3.Centre for Exploration TargetingThe University of Western AustraliaPerthAustralia

Personalised recommendations