Mineralium Deposita

, Volume 52, Issue 3, pp 297–315 | Cite as

Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous rocks of the Erlian Basin

  • Christophe BonnettiEmail author
  • Michel Cuney
  • Sylvain Bourlange
  • Etienne Deloule
  • Marc Poujol
  • Xiaodong Liu
  • Yunbiao Peng
  • Jianxing Yang


Carboniferous–Permian, Triassic and Jurassic igneous basement rocks around the Erlian Basin in northeast China have been investigated through detailed mineralogical, whole-rock geochemistry, geochronological data and Sm–Nd isotope studies. Carboniferous–Permian biotite granites and volcanic rocks belong to a calc-alkaline association and were emplaced during the Late Carboniferous–Early Permian (313 ± 1–286 ± 2 Ma). These rocks are characterised by positive εNd(t) (3.3–5.3) and fairly young T DM model ages (485–726 Ma), suggesting a dominant derivation from partial melting of earlier emplaced juvenile source rocks. Triassic biotite granites belong to a high-K calc-alkaline association and were emplaced during the Middle Triassic (243 ± 3–233 ± 2 Ma). Their negative εNd(t) (−2 to −0.1) and higher T DM model ages (703–893 Ma) suggest a contribution from Precambrian crust during the magma generation processes, leading to a strong enrichment in K and incompatible elements such as Th and U. Highly fractionated magmas crystallised in U-rich biotite (up to 21 ppm U) and two-mica granites. In biotite granite, the major U-bearing minerals are uranothorite and allanite. They are strongly metamict and the major part of their uranium (90 %) has been released from the mineral structure and was available for leaching. Mass balance calculations show that the Triassic biotite granites may have, at least, liberated ∼14,000 t U/km3 and thus correspond to a major primary uranium source for the U deposits hosted in the Erlian Basin.


Erlian Basin Uranium sources Carboniferous–Permian and Triassic igneous rocks 



Financial support for this study was provided by AREVA Mines, the East China Institute of Technology in Nanchang, Jiangxi, and the Geological Team No. 208, Bureau of Geology, Chinese National Nuclear Corporation in Baotou, Inner Mongolia. The authors acknowledge colleagues from the East China Institute of Technology for the presentations and scientific discussions that have been organised about the geology of the Erlian Basin, as well as colleagues from the Geological Team No. 208 for their field support and the access to drill cores. The authors are thankful to Menhong from the Geological team No. 208 for the translation during the field mission and geologists from AREVA Mines for the discussions on the geodynamic evolution of eastern Asia. The authors are also indebted to Marc Brouand from AREVA Mines for access to ion probe analysis sessions. Finally, the authors would like to thank both reviewers R.L. Romer and S. Li for improving this paper.

Supplementary material

126_2016_661_MOESM1_ESM.docx (393 kb)
ESM 1 (DOCX 392 kb)
126_2016_661_Fig11_ESM.jpg (156 kb)
Fig. S1

Classification diagrams for basement igneous rocks surrounding the Wulanchabu and Manite sub-basins. a Classification diagram for granite samples (modified after Cox et al. 1979; the dividing line between alkalic and sub-alkalic magma series is from Miyashiro 1978). b Classification diagram for volcanic rock samples (modified after Le Bas et al. 1986) (JPG 156 kb)

126_2016_661_MOESM2_ESM.eps (1.5 mb)
High Resolution Image (EPS 1499 kb)
126_2016_661_Fig12_ESM.jpg (171 kb)
Fig. S2

Spider diagrams and rare earth element (REE) patterns from basement igneous rocks surrounding the Wulanchabu and Manite sub-basins. ab Spider diagrams and REE spectra of Triassic granite. cd Spider diagrams and REE spectra of Carboniferous–Permian granite. ef Spider diagrams and REE spectra of the Carboniferous–Permian volcanic rocks (JPG 170 kb)

126_2016_661_MOESM3_ESM.eps (1.2 mb)
High Resolution Image (EPS 1197 kb)
126_2016_661_Fig13_ESM.jpg (126 kb)
Fig. S3

Cathodoluminescence photographs of zircon grains that were analysed at the ion probe for U–Pb dating of igneous rocks from the northern margins of the Wulanchabu and Manite sub-basins. The white circles indicate the spots of analysis. U–Pb ages presented in ESM Table S7 are indicated (in Ma) for each point of analysis. a Sample E07. b Sample E08. c Sample E09. d Sample E11. e Sample E14. f Sample ZK1-152.0 m. g Sample E01. h Sample E05 (JPG 126 kb)

126_2016_661_MOESM4_ESM.eps (4.2 mb)
High Resolution Image (EPS 4306 kb)
126_2016_661_Fig14_ESM.jpg (170 kb)
Fig. S4

Photographs of detrital monazite grains and plots of U–Th–Pb average weighted ages using individual ages and errors (2σ) for representative detrital grains of monazite from sediments of the Saihan and Erlian formations. ab Carboniferous monazite (sample DH2-146.2m). cd Triassic monazite (sample DH3-118.0m). ef Jurassic monazite (sample DH1-111.6m). gh Cretaceous monazite (sample DH3-54.6m). Sample DH3-54.6m belongs to the sediments of the Erlian Formation at the Nuheting deposit and samples DH1-111.6m, DH2-146.2m and DH3-118.0m belong to the sediments of the Saihan Formation at the Bayinwula deposit. Black lines on photographs correspond to EPMA profiles indicated as P1, P2… Mnz = monazite; Qtz = quartz; Py = pyrite (JPG 169 kb)

126_2016_661_MOESM5_ESM.eps (11.8 mb)
High Resolution Image (EPS 12090 kb)
126_2016_661_Fig15_ESM.jpg (169 kb)
Fig. S5

Discrimination diagrams for Carboniferous–Permian and Triassic basement igneous rocks surrounding the Wulanchabu and Manite sub-basins. a Rb–(Yb + Nb) discrimination diagram for Carboniferous–Permian and Triassic granites (modified after Pearce et al. 1984) showing the fields of syn-collisional granite (syn-COLG), within-plate granite (WPG), volcanic-arc granite (VAG) and ocean-ridge granite (ORG). b Rb–(Yb+Ta) discrimination diagram for Carboniferous–Permian and Triassic granites (modified after Pearce et al. 1984) showing the fields of syn-collisional granite (syn-COLG), within-plate granite (WPG), volcanic-arc granite (VAG) and ocean-ridge granite (ORG). c Th/Yb-Ta/Yb discrimination diagram for Carboniferous–Permian and Triassic igneous rocks (modified after Pearce 1982). Vectors indicate the influence of subduction (S), crustal contamination (C), within-plate enrichment (W) and fractional crystallisation (F). Dashed lines separate the boundaries of the tholeiitic (TH), calc-alkaline (CA), and high-K calc-alkaline (K-CA) fields. Active continental margin and oceanic island arc fields modified after Schulz et al. (2004) (JPG 169 kb)

126_2016_661_MOESM6_ESM.eps (1.5 mb)
High Resolution Image (EPS 1502 kb)


  1. Arndt NT, Goldstein SL (1987) Use and abuse of crust-formation ages. Geology 15–10:893–895CrossRefGoogle Scholar
  2. Ballouard C, Boulvais P, Poujol M, Gapais D, Yamato P, Tartèse R, Cuney M (2015) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220–223:1–22CrossRefGoogle Scholar
  3. Bonnetti C, Malartre F, Huault V, Cuney M, Bourlange S, Liu X, Peng Y (2014) Sedimentology, stratigraphy and palynological occurrences of the Late Cretaceous Erlian Formation, Erlian Basin, Inner Mongolia, People’s Republic of China. Cretac Res 48:177–192CrossRefGoogle Scholar
  4. Bonnetti C, Cuney M, Malartre F, Michels R, Liu X, Peng Y (2015a) The Nuheting deposit, Erlian Basin, NE China: synsedimentary to diagenetic uranium mineralization. Ore Geol Rev 69:118–139CrossRefGoogle Scholar
  5. Bonnetti C, Cuney M, Michels R, Truche L, Malartre F, Liu X, Yang J (2015b) The multiple roles of sulfate-reducing bacteria and Fe–Ti oxides in the genesis of the Bayinwula roll front-type uranium deposit, Erlian Basin, NE China. Econ Geol 110:1059–1081CrossRefGoogle Scholar
  6. Cai ZG, Li HR, Tang SC (1990) Cretaceous in Erlian Basin. In: Wang SE (ed) Stratigraphy of China 11. The Cretaceous system of China. Geological Publishing House, Beijing; 146-184 (in Chinese)Google Scholar
  7. Cai C, Li H, Qin M, Luo X, Wang F, Ou G (2007) Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China. Ore Geol Rev 32:262–274CrossRefGoogle Scholar
  8. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analysis of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newslett 25:187–198CrossRefGoogle Scholar
  9. Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M, Zhu R (2013) Timing, duration and role of magmatism in wide rift systems: insights from the Jiaodong Peninsula (China, East Asia). Gondwana Res 24:412–428CrossRefGoogle Scholar
  10. Chen Y, Chen W (1997) Mesozoic volcanic rocks: chronology, geochemistry and tectonic background. Seismology Press, BeijingGoogle Scholar
  11. Cocherie A, Albarede F (2001) An improved U–Th–Pb age calculation for electron microprobe dating of monazite. Geochim Cosmochim Acta 65–24:4509–4522CrossRefGoogle Scholar
  12. Compston W, Williams IS, Meyer CE (1984) U/Pb geochronology of zircons from lunar breccias 73217 using a sensitive high mass resolution ion microprobe. In: Proceedings of the 14th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 89B, 525–534Google Scholar
  13. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin, LondonCrossRefGoogle Scholar
  14. Cuney M, Friedrich M (1987) Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis. Bull Mineral 110:235–247Google Scholar
  15. Cuney M, Kyser K (2008) Recent and not-so-recent developments in uranium deposits and implications for exploration. Min Assoc Can 39:257Google Scholar
  16. Cuney M, Friedrich M, Blumenfeld P, Bourgignon A, Boiron MC, Vigneresse JL, Poty B (1989) Metallogenesis in the French part of the Variscan orogeny. Part I: U-preconcentrations in the pre-Variscan and Variscan formations—a comparison with Sn, W, and Au. Tectonophysics 177:39–57CrossRefGoogle Scholar
  17. Currie PJ, Eberth DA (1993) Palaeontology, sedimentology and palaeoecology of the Iren Dabasu formation (Upper Cretaceous), Inner Mongolia, People’s Republic of China. Cretac Res 14:127–144CrossRefGoogle Scholar
  18. Dahlkamp FJ (2009) Uranium deposits of the world: Asia. Springer, BerlinCrossRefGoogle Scholar
  19. Davis GA, Zheng Y, Wang C, Darby BJ, Zhang C, Gehrels G (2001) Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. GSA Memoir 194:171–197Google Scholar
  20. De Paolo DJ (1988) Neodynium isotope geochemistry: an introduction. Springer, New YorkGoogle Scholar
  21. Debon F, Lefort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinburgh: Earth Sci 73:135–149CrossRefGoogle Scholar
  22. Debon F, Lefort P (1988) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull Minéral 111:493–510Google Scholar
  23. Dou L, Chang L (2003) Fault linkage patterns and their control on the formation of the petroleum systems of the Erlian Basin, eastern China. Mar Petrol Geol 20:1213–1224CrossRefGoogle Scholar
  24. Dou L, Zhu Y, Yang T, Xu S, Ping X (1998) Origins of heavy oils in the Erlian Basin, NE China. Mar Petrol Geol 15:658–670CrossRefGoogle Scholar
  25. Eby GN (1992) Chemical subdivision of the A type granitoids: petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  26. Faure M, Lin W, Chen Y (2012) Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China Block? Terra Nov. 24–6:456–466Google Scholar
  27. Forbes P, Pacquet A, Chantret F, Oumarou J, Pagel M (1984) Marqueurs du volcanisme dans le gisement d’uranium d’Akouta (République du Niger). CR Acad Sci Paris 298:647–650Google Scholar
  28. Förster HJ (1999) The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineral Soc 63–2:239Google Scholar
  29. Friedrich MH, Cuney M, Poty B (1987) Uranium geochemistry in peraluminous leucogranites. In: Concentration mechanisms of uranium in geological environments—a conference report. Uranium 3:353–385Google Scholar
  30. Ge WC, Wu F, Zhou C, Zhang J (2007) Porphyry Cu–Mo deposits in the eastern Xing’an–Mongolian orogenic belt: mineralization ages and their geodynamic implications. Chin Sci Bull 52–24:3416–3427CrossRefGoogle Scholar
  31. Gou YX, Wang ZZ, Yang JD (1986) Cretaceous Ostracoda from Eren Basin of Nei Mongol along with sedimentary environments. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica, the First Exploration Company, North China Oil Field, Ministry of Oil Industry (eds) Cenozoic–Mesozoic palaeontology and stratigraphy of East China, Series 2. Cretaceous Ostracod and sporo-pollen fossils of Eren Basin. Anhui Science and Technology Publishing House, Hefei; 104 (in Chinese, English abstract)Google Scholar
  32. Graham SA, Hendrix MS, Johnson CL, Badamgarav D, Badarch G, Amory J, Porte M, Barsbold R, Webb LE, Hacker BR (2001) Sedimentary record and tectonic implications of Mesozoic rifting in southern Mongolia. GSA Bull 113:1560–1579CrossRefGoogle Scholar
  33. Guo CL, Wu FY, Yang JH, Lin JQ, Sun DY (2004) The extensional setting of the Early Cretaceous magmatism in eastern China: example from the Yinmawanshan pluton in southern Liaodong Peninsula. Acta Petrol Sin 20:1193–1204 (in Chinese, English abstract)Google Scholar
  34. He Z, Luo Y, Ma H (2010) Sedimentary facies characteristics of ore-bearing target horizon and its relationship to sandstone-type uranium mineralization in Bayingebi Basin. World Nucl Geosci 27:11–18Google Scholar
  35. Jahn BM, Wu F, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Geol Soc Am Special Papers 350:181–193Google Scholar
  36. Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E, Jahn BM, Gruschka S, Khain EV, Demoux A, Wingate MTD (2007) Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with Arabian-Nubian shield. Geol Soc Am Mem 200:181–209CrossRefGoogle Scholar
  37. Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E (2014) Reassessment of the continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25–1:103–125CrossRefGoogle Scholar
  38. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27–3:745–750CrossRefGoogle Scholar
  39. Lepvrier C, Maluski H (2008) The Triassic Indosinian orogeny in East Asia. Compt Rendus Geosci 340:75–82CrossRefGoogle Scholar
  40. Leroy J (1984) Episyénisation dans le Gisement d’Uranium du Bernardan (Marche): Comparaison avec des Gisements Similaires du Nord-Ouest du Massif Central Français. Mineral Deposits 19–1:26–35Google Scholar
  41. Li HT, Wu SX, Cai CF, Luo XR (2008) Forming processes of petroleum-related sandstone-type uranium ore: example from Qianjiadian uranium deposit. Geochimica 37–6:523–532 (in Chinese with English abstract)Google Scholar
  42. Li S, Wang T, Wilde SA, Tong Y, Hong D, Guo Q (2012) Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos 134–135:123–145CrossRefGoogle Scholar
  43. Li S, Wang T, Wilde SA, Tong Y (2013) Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth Sci Rev 126:206–234CrossRefGoogle Scholar
  44. Li S, Wilde SA, He Z, Jiang X, Liu R, Zhao L (2014) Triassic sedimentation and postaccretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China. Tectonics 33–6:960–981CrossRefGoogle Scholar
  45. Li S, Wilde SA, Wang T, Xiao W, Guo Q (2015) Latest Early Permian granitic magmatism in southern Inner Mongolia, China: implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Res 29:168–180CrossRefGoogle Scholar
  46. Lin C, Eriksson K, Sitian L, Yongxian W, Jianye R, Yanmei Z (2001) Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China. AAPG Bull 85–11:2017–2043Google Scholar
  47. Lin W, Faure M, Nomade S, Shang Q, Renne PR (2008) Permian–Triassic amalgamation of Asia: insights from northeast China sutures and their place in the final collision of North China and Siberia. Compt Rendus Geosci 340:190–201CrossRefGoogle Scholar
  48. Ludwig KR (1998) On the treatment of concordant uranium–lead ages. Geochim Cosmochim Acta 62–4:665–676CrossRefGoogle Scholar
  49. Meng QR (2003) What drove Late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 369:155–174CrossRefGoogle Scholar
  50. Meng QR, Hu JM, Jin JQ, Zhang Y, Xu DF (2003) Tectonics of the Late Mesozoic wide extensional basin system in the China–Mongolia border region. Basin Res 15:397–415CrossRefGoogle Scholar
  51. Miao L, Luo Z, Guan K, Huang J (1998) The implication of the SHRIMP U–Pb age in zircon to the petrogenesis of the Linglong granite, East Shandong Province. Acta Petrol Sin 14:198–206 (in Chinese with English abstract)Google Scholar
  52. Michard A, Gurriet P, Soudant M, Albarede F (1985) Nd isotopes in French phanerozoic shales: external vs internal aspects of crustal evolution. Geochim Cosmochim Acta 49:601–610CrossRefGoogle Scholar
  53. Miyashiro A (1978) Nature of alkalic volcanic rock series. Contrib Mineral Petrol 66:91–104CrossRefGoogle Scholar
  54. Nie F (2008) Uranium mineralization of the Bayawula deposit, Erlian Basin, northeast China. IAEA Technical Meeting “Uranium exploration and mining methods”, Amman, Jordan, 17–21 November 2008Google Scholar
  55. Nie F, Chen AP, Peng Y (2010) Sandstone-type uranium deposits related to fluvial systems of the Erlian Basin. Geological Publishing House, Beijing (in Chinese)Google Scholar
  56. OECD-NEA/IAEA (2010) Uranium 2009: resources, production and demandGoogle Scholar
  57. OECD-NEA/IAEA (2014) Uranium 2014: resources, production and demandGoogle Scholar
  58. Orolmaa D, Erdenesaihan G, Borisenko AS, Fedoseev GS, Babich VV, Zhmodik SM (2008) Permian–Triassic granitoid magmatism and metallogeny of the Hangayn (Central Mongolia). Russ Geol Geophys 49:534–544CrossRefGoogle Scholar
  59. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, Chichester, pp 525–548Google Scholar
  60. Pearce JA, Harris NW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  61. Peucat JJ, Jegouzo P, Vidal P, Bernard-Griffiths J (1988) Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. Earth Planet Sci Lett 88(1-2):60–68CrossRefGoogle Scholar
  62. Ren J, Li S, Jiao G (1998) Extensional tectonic system of the Erlian fault basin group and its deep background. J China Univ Geosci 23:567–572Google Scholar
  63. Ren J, Tamaki K, Li S, Zhang J (2002) Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics 344:175–205CrossRefGoogle Scholar
  64. Saunders AD, Norry MJ, Tarney J (1988) Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J Petrol, Special Lithosphere Issue, pp 415–445Google Scholar
  65. Schulz B, Bombach K, Pawlig S, Braetz H (2004) Neoproterozoic to Early Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window, Eastern Alps. Int J Earth Sci 93:824–843CrossRefGoogle Scholar
  66. Sha J (2007) Cretaceous stratigraphy of northeast China: non-marine and marine correlation. Cretac Res 28:146–170CrossRefGoogle Scholar
  67. Su S, Niu Y, Deng J, Liu C, Zhao G, Zhao X (2007) Petrology and geochronology of Xuejiashiliang igneous complex and their genetic link to the lithospheric thinning during Yanshanian orogenesis in eastern China. Lithos 96:90–107CrossRefGoogle Scholar
  68. Tartèse R, Boulvais P, Poujol M, Glouagen E, Cuney M (2012) Uranium mobilization from the Variscan Questembert syntectonic granite during hydrothermal alateration fluid–rock interactions at depth. Econ Geol 108:379–386CrossRefGoogle Scholar
  69. Turpin L, Cuney M, Friedrich M, Bouchez JL, Aubertin M (1990) Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contrib Mineral Petrol 104:163–172CrossRefGoogle Scholar
  70. Van Itterbeeck J, Horne DJ, Bultynck P, Vandenberghe N (2005) Stratigraphy and palaeoenvironment of the dinosaur-bearing Upper Cretaceous Iren Dabasu Formation, Inner Mongolia, People’s Republic of China. Cretac Res 26:699–725CrossRefGoogle Scholar
  71. Van Itterbeeck J, Missiaen P, Folie A, Markevick VS, Van Damme D, Dian-Yong G, Smith T (2007) Woodland in a fluvio-lacustrine environment on the dry Mongolian Plateau during the Late Paleocene: evidence from the mammal bearing Subeng section (Inner Mongolia, P.R. China). Palaeogeogr Palaeoclimatol Palaeoecol 243:55–78CrossRefGoogle Scholar
  72. Walton AW, Galloway WE, Henry CD (1981) Release of uranium from volcanic glass in sedimentary sequences: an analysis of two systems. Econ Geol 76:69–88CrossRefGoogle Scholar
  73. Wang Q (2009) Application of geochemical pattern to uranium ore prospecting. Taking Tamusu area in Bayingebi Basin as an example. World Nucl Geosci 26:18–24Google Scholar
  74. Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu YF, Zhu RX (2006) Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth Planet Sci Lett 251:179–198CrossRefGoogle Scholar
  75. Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397CrossRefGoogle Scholar
  76. Wei S, Qin M, Li Y, He Z, Chen A, Shen K (2005) Late Mesozoic–Cenozoic tectono-sedimentary evolution and sandstone-hosted uranium mineralization of the Erlian Basin. Mineral Deposit Research: Meeting the Global Challenge, 8th Biennial SGA Meeting, Beijing, Metallogeny and Exploration 3–27:320–322Google Scholar
  77. Wernicke BP, Axen GJ, Snow JK (1988) Basin and range extensional tectonics in the latitude of Las Vegas, Nevada. GSA Bull 100:1738–1757CrossRefGoogle Scholar
  78. Wiedenbeck K, Allé P, Corfu F, Griffi WL, Meier M, Oberli I, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19–1:1.23Google Scholar
  79. Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc 164:31–47CrossRefGoogle Scholar
  80. Wu Z, Cui S, Zhu D, Feng X, Ma Y (2000a) Thermal evolution of plutons and uplift process of the Yanshan orogenic belt. Acta Geol Sin 74:7–13Google Scholar
  81. Wu FY, Jahn BM, Wilde S, Sun DY (2000b) Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328(1–2):89–113CrossRefGoogle Scholar
  82. Wu FJ, Sun DY, Li HM, Wang XL (2001) The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints. Phys Chem Earth 26(9–10):793–803CrossRefGoogle Scholar
  83. Wu FY, Sun DY, Li H, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173CrossRefGoogle Scholar
  84. Wu G, Sun F, Zhao C, Li Z, Zhao A, Pang Q, Li G (2005a) Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chin Sci Bull 50:2733–2743CrossRefGoogle Scholar
  85. Wu FY, Lin JQ, Wilde SA, Sun DY, Yang JH (2005b) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119CrossRefGoogle Scholar
  86. Wu FY, Yang JH, Wilde SA, Zhang XO (2005c) Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol 221:127–156CrossRefGoogle Scholar
  87. Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG, Park SC (2007) Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chem Geol 238:232–248CrossRefGoogle Scholar
  88. Xiao W, Windley BF, Hao J, Zhai M (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics 22–6:1069Google Scholar
  89. Yang JH, Wu FY, Wilde SA, Liu XM (2007) Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem Geol 242:155–175CrossRefGoogle Scholar
  90. Ying JF, Zhou XH, Zhang LC, Wang F (2010a) Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications. J Asian Earth Sci 39–6:786–793CrossRefGoogle Scholar
  91. Ying JF, Zhou XH, Zhang LC, Wang F, Zhang YT (2010b) Geochronological and geochemical investigation of the Late Mesozoic volcanic rocks from the northern Great Xing’an Range and their tectonic implications. Int J Earth Sci 99:357–378CrossRefGoogle Scholar
  92. Zhai MG, Liu WJ (2003) Paleoproterozoic tectonic history of the North China Craton: a review. Precambrian Res 122:183–199CrossRefGoogle Scholar
  93. Zhai MG, Santosh M (2011) The Early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20–1:6–25CrossRefGoogle Scholar
  94. Zhang X, Zhang H, Wilde SA, Yang Y, Chen H (2010) Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: petrogenesis and implications for phanerozoic continental crustal growth. Lithos 117:283–306CrossRefGoogle Scholar
  95. Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ (2010) Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing’an Range, NE China: evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics 12:50–78Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christophe Bonnetti
    • 1
    • 2
    Email author
  • Michel Cuney
    • 1
  • Sylvain Bourlange
    • 1
  • Etienne Deloule
    • 3
  • Marc Poujol
    • 4
  • Xiaodong Liu
    • 2
  • Yunbiao Peng
    • 5
  • Jianxing Yang
    • 5
  1. 1.GéoRessources-CNRS-CREGUUniversité de LorraineVandoeuvre-lès-NancyFrance
  2. 2.East China Institute of TechnologyNanchangPeople’s Republic of China
  3. 3.CNRS-CRPG, UMR 7358Vandoeuvre-lès NancyFrance
  4. 4.Géosciences Rennes - UMR CNRS 6118, OSURUniversité de Rennes 1Rennes CedexFrance
  5. 5.Geological Team No. 208, Bureau of GeologyChinese National Nuclear CorporationBaotouPeople’s Republic of China

Personalised recommendations