Advertisement

Mineralium Deposita

, Volume 52, Issue 1, pp 1–34 | Cite as

The high-grade Las Cruces copper deposit, Spain: a product of secondary enrichment in an evolving basin

  • Fernando TornosEmail author
  • Francisco Velasco
  • John F. Slack
  • Antonio Delgado
  • Nieves Gomez-Miguelez
  • Juan Manuel Escobar
  • Carmelo Gomez
Article

Abstract

The Las Cruces deposit (Iberian Pyrite Belt) includes a large, high-grade cementation zone capped by unusual rocks that contain carbonates, galena, iron sulphides, and quartz. Between the Late Cretaceous(?) and Tortonian, the volcanogenic massive sulphides were exhumed and affected by subaerial oxidation that formed paired cementation and gossan zones. Onset of Alpine extension produced accelerated growth of the cementation zone along extensional faults, leading to formation of the high-grade copper ore at ca. 11 Ma. Later, replacement of the overlying gossan by sulphide- and carbonate-rich rocks beneath sealing marl sediments is thought to have involved microbial processes, occurring between the Messinian (ca. 7.2 Ma) and today. Isotope data show that the cementation zone formed by the mixing of descending acidic waters derived from oxidation of the massive sulphides, with upwelling geothermal waters flowing at temperatures above 100 °C. The C, O, and Sr isotope values of the mineralization (87Sr/86Sr 0.7101–0.7104) and of the local groundwater (0.7102–0.7104) reflect equilibration with basement rocks, and indicate that influence on the ore-forming process by marl-equilibrated water (0.7091–0.7093) or Miocene seawater (0.7086–0.7092) was negligible. The high sulphur isotope values of the sulphides in the biogenic zone (most +19 to +24 ‰) are well above those of the primary sulphides (δ34S ca. −6.8 to +10.3 ‰) and likely reflect formation of the biogenic sulphides by reduction of aqueous sulphate in the groundwaters. Sulphur isotope values of the cementation zone (δ34S ca. −2.4 to +21.7 ‰) are also consistent with some contribution of sulphur from the biogenic reduction of aqueous sulphate.

Keywords

Pyrite Chalcopyrite Galena Massive Sulphide Bornite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was funded by the Spanish project SEIDI CGL 2011-23207 to FT and FV, the grant IT762-13 (GIC12/104) of the Basque Government to FV and, in its initial stages, by ProMine EU project FP7-NMP-2008-LARGE-2 228559. We would like to thank Cobre Las Cruces SA (First Quantum Minerals) for granting access to the open pit mine and allowing sampling of drill cores and waters. Special thanks are given to Ivan Carrasco, Juan Carlos Baquero, Antonio Francos, José Gómez, and Gobain Obejero for continuous support and sharing knowledge of the mine. We also acknowledge Carmen Conde, Cesar Menor, and Juan Carlos Videira for fruitful discussions and advice on the geology and mineralogy of the deposit. We additionally thank Carlos Ayora (CSIC), Baruch Spiro (Natural History Museum, London), and Ricardo Amils, Monika Oggerin, Nuria Rodriguez, and Enoma Omoregie (all Centro de Astrobiología, CSIC-INTA) for comments and suggestions on geomicrobiology, Clemente Recio (Universidad de Granada) for help in the stable isotope data, and Terry Spell for suggestions on interpretation of the Ar-Ar ages. We are also indebted to the technicians from the laboratories (including Sgiker of the University of the Basque Country) for their help with the analyses presented in this research. Finally, we thank Erik Melchiorre, Albert Gilg, and Bernd Lehmann for the thoughtful review and editing of the manuscript.

Supplementary material

126_2016_650_MOESM1_ESM.pdf (106 kb)
ESM Table 1 Isotopic composition of water in Las Cruces deposit (PDF 106 kb)
126_2016_650_MOESM2_ESM.pdf (48 kb)
ESM Table 2 Representative whole-rock analyses of samples from biogenic zone and related rocks (PDF 47.7 kb)
126_2016_650_MOESM3_ESM.pdf (97 kb)
ESM Table 3 Ar-Ar geochronological data for secondary acidic alteration zone. All data are reported at 1σ uncertainty level, unless noted otherwise (PDF 96.6 kb)
126_2016_650_MOESM4_ESM.pdf (74 kb)
ESM Table 4 Electron microprobe analyses of enargite (PDF 74.4 kb)

References

  1. Ague JJ, Brimhall GH (1989) Geochemical modeling of steady state fluid flow and chemical reaction during supergene enrichment of porphyry copper deposits. Econ Geol 84:506–528CrossRefGoogle Scholar
  2. Al-Aasm IS, Taylor BE, South B (1990) Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem Geol 90:119–125Google Scholar
  3. Albert JF (1979) El mapa español de flujos caloríficos. Intento de correlación entre anomalías geotérmicas y estructura cortical. Bol Geol Min 90:36–48Google Scholar
  4. Almodovar GR, Castro JA, Sobol F, Toscano M (1997) Geology of the Rio Tinto ore deposits Geology and VMS deposits of the Iberian Pyrite Belt. SEG Fieldbook Series 27: pp 165-172Google Scholar
  5. Almodovar GR, Saez R, Pons JM, Maestre A, Toscano M, Pascual E (1998) Geology and genesis of the Aznalcollar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineral Deposita 33:111–136Google Scholar
  6. Alpers CH, Brimhall GE (1989) Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, Northern Chile. Econ Geol 84:229–255CrossRefGoogle Scholar
  7. Alvaro A (2010) Mineralogía y geoquímica de sulfatos secundarios en ambientes de drenaje ácido de mina. Área minera del yacimiento de San Miguel (Faja Pirítica Ibérica). PhD Thesis, Universidad Pais Vasco, pp 273Google Scholar
  8. Anderson JA (1982) Characteristics of leached capping and techniques of appraisal. In: Advances in the geology of porphyry copper deposits; southwestern North America. University Arizona Press, Tucson, pp 275–295Google Scholar
  9. Arribas A (1995) Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid. Min Assoc Can Short Course 23:419–454Google Scholar
  10. Barrie CT, Amelin Y, Pascual E (2002) U-Pb geochronology of VMS mineralization in the Iberian Pyrite Belt. Mineral Deposita 37:684–703CrossRefGoogle Scholar
  11. Barriga FJAS (1990) Metallogenesis in the Iberian Pyrite Belt. In: Dallmeyer RD, Martinez Garcia E (eds) Pre-Mesozoic geology of Iberia. Springer Verlag, Heidelberg, pp 369–379CrossRefGoogle Scholar
  12. Barton PB, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 278–240Google Scholar
  13. Baumgartner R, Fontboté L, Vennemann T (2008) Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Econ Geol 103:493–537CrossRefGoogle Scholar
  14. Bawden TM, Einaudi MT, Bostick BC, Meibom A, Wooden J, Norby JW, Orobona MJT, Chamberlain CP (2003) Extreme S-34 depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: evidence for bacteriogenic supergene sphalerite. Geology 31:913–916CrossRefGoogle Scholar
  15. Belogub EV, Novoselov CA, Spiro B, Yakovleva BA (2003) Mineralogical and S isotopic features of the supergene profile of the Zapadno-Ozernoe massive sulphide and Au-bearing gossan deposit, South Urals. Mineral Mag 67:339–354CrossRefGoogle Scholar
  16. Belogub EV, Novoselov KA, Yakovleva VA, Spiro B (2008) Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals. Ore Geol Rev 33:239–254CrossRefGoogle Scholar
  17. Bendezú R, Fontboté L (2009) Cordilleran epithermal Cu-Zn-Pb-(Au-Ag) mineralization in the Colquijirca District, Central Peru: deposit-scale mineralogical patterns. Econ Geol 104:905–944CrossRefGoogle Scholar
  18. Bethke CM (2008) Geochemical and biogeochemical modeling. Cambridge University Press, 543 pGoogle Scholar
  19. Blake C (2008) The mineralogical characterisation and interpretation of a precious metal-bearing fossil gossan, Las Cruces, Spain. Ph D Thesis, Cardiff University, pp 207Google Scholar
  20. Boyle DR (2003) Preglacial weathering of massive sulfide deposits in the Bathurst Mining Camp: economic geology, geochemistry, and exploration applications In: Goodfellow WD, McCutcheon SR, Peter JM (eds) Massive sulphide deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Soc Explor Geophys, Geophys Monogr 11: 689–721Google Scholar
  21. Braxton DP, Cooke DR, Ignacio AM, Rye RO, Waters PJ (2009) Ultra-deep oxidation and exotic copper formation at the Late Pliocene Boyongan and Bayugo porphyry copper-gold deposits, Surigao, Philippines: geology, mineralogy, paleoaltimetry, and their Implications for geologic, physiographic, and tectonic controls. Econ Geol 104:333–349CrossRefGoogle Scholar
  22. Brimhall GH, Alpers CN, Cunningham AR (1985) Analysis of supergene ore forming processes and groudwater solute transport using mass balance principles. Econ Geol 80:1227–1256CrossRefGoogle Scholar
  23. Brunner B, Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim Cosmochim Acta 69:4759–4771CrossRefGoogle Scholar
  24. Capitán MA (2006) Mineralogía y geoquímica de la alteración superficial de depósitos de sulfuros masivos en la Faja Pirítica Ibérica. PhD Thesis, Universidad de Huelva, 360 p.Google Scholar
  25. Capitán MA, Nieto JM, Saez R, Almodovar GR (2004) Mineralogía del gossan del yacimiento de Las Cruces (Sevilla). Macla 2:21–22Google Scholar
  26. Carothers WW, Adami LH, Rosenbauer RJ (1988) Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochim Cosmochim Acta 52:2445–2450CrossRefGoogle Scholar
  27. Carvalho D, Barriga FJAS, Munha J (1999) Bimodal siliciclastic systems—the case of the Iberian Pyrite Belt. Rev Econ Geol 8:375–408Google Scholar
  28. Chipera SJ, Apps JA (2001) Geochemical stability of natural zeolites. Rev Mineral Geochem 45:117–161CrossRefGoogle Scholar
  29. Civis J, Sierro FJ, González-Delgado JA, Flores JA, Andrés I, Porta J, Valle MF (1987) El Neógeno marino de la provincia de Huelva, antecedentes y definición de las unidades litoestratigráficas. In: Paleontología del Neógeno de Huelva (W del Guadalquivir). Ediciones Universidad de Salamanca. pp 9–27Google Scholar
  30. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  31. Claypool GE, Threlkeld C, Mankiewicz P, Arthur M, Anderson TF (1985) Isotopic composition of interstitial fluids and origin of methane in slope sediment of the Middle America trench, Deep-Sea Drilling Project Leg-84. Initial Rep Deep Sea Drill Proj 84:683–691Google Scholar
  32. Conde C, Tornos F, Fernandez J, Doyle M (2003) Encuadre estratigráfico de los sulfuros masivos de la parte Suroriental de la Faja Piritica: Aznalcollar-Los Frailes y Las Cruces. Bol Sociedad Española Mineralogía 26-A:161–162Google Scholar
  33. Conde C, Tornos F, Doyle M et al (2007) Geology and lithogeochemistry of the unique Las Cruces VMS deposit, Iberian Pyrite Belt. In: Andrew CJ (ed) Digging deeper. Proceedings of the 9th Biennial SGA Meeting IAEG, Dublin, pp 1101–1104Google Scholar
  34. Deer WA, Howie RA, Zussman J (1966) Rock forming minerals. Longman Press, LondonGoogle Scholar
  35. Detmers J, Brüchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894CrossRefGoogle Scholar
  36. Diez Ercilla M, López Pamo E, Sánchez España J (2009) Photoreduction of Fe(III) in the acidic mine pit lake of San Telmo (Iberian Pyrite Belt): field and experimental work. Aquat Geochem 15:391–419CrossRefGoogle Scholar
  37. Donald R, Southam G (1999) Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochim Cosmochim Acta 63:2019–2023CrossRefGoogle Scholar
  38. Doyle M (1996) Las Cruces copper proyect, Pyrite Belt, Spain. Bol Geol Min 107:681–683Google Scholar
  39. Doyle M, Morrissey C, Sharp G (2003) The Las Cruces Orebody, Seville province, Andalucía, Spain. In: Kelly CG, Andrew CJ, Ashton JH, Boland MB, Earls G, Fusciardi L, Stanley G (eds) The geology and genesis of Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 381–390Google Scholar
  40. Duggen S, Hoernle K, van den Bogaard P, Garbe-Schönberg D (2005) Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46:1155–1201CrossRefGoogle Scholar
  41. Emmons WH (1918) The principles of economic geology. McGraw-Hill Book CompanyGoogle Scholar
  42. Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  43. Fallick AE, Ashton JH, Boyce AJ, Ellam RM, Russell MJ (2001) Bacteria were responsible for the magnitude of the world class hydrothermal base metal sulfide orebody at Navan, Ireland. Econ Geol 96:885–890Google Scholar
  44. Fernández M, Berástegui X, Puig C, García-Castellanos D, Jurado MJ, Torné M, Banks C (1998) Geophysical and geological constraints on the evolution of the Guadalquivir foreland basin, Spain. Geol Soc Lond Spec Publ 134:29–48CrossRefGoogle Scholar
  45. Foley NK, Flohr MJK (1998) Ancient gossan formation at the Bald Mountain VMS deposit, Maine: a natural analogue of the modern oxidation of tailing piles? GSA Meeting. Abstr with programs 29: A166Google Scholar
  46. Fortin D, Beveridge T (1997) Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe sulfides. Geomicrobiol J 14:1–21CrossRefGoogle Scholar
  47. Friedman I, O’Neil JR (1977) Data of Geochemistry. Compilation of stable isotope fractionation factors of geochemical interest USGS Professional Paper 440-KK, 12 ppGoogle Scholar
  48. Furukawa Y, Barnes HL (1996) Reactions forming smythite, Fe9S11. Geochim Cosmochim Acta 60:3581–3591CrossRefGoogle Scholar
  49. Galán E, González L, Mayoral E, Muñiz F (1995) Contribution of clay mineralogy to the paleoenvironmental interpretation of upper miocene detrital sediments. Southwestern of the Iberian Peninsula In: Elsen P, Grobet M, Keung H, Leeman R, Schoonheydt R, Toufar H (eds) Euroclay’95. Leuveil, pp 311–312Google Scholar
  50. Galindo C, Pankhurst RJ, Casquet C, Coniglio J, Baldo E, Rapela CW, Saavedra J (1997) Age, Sr- and Nd-isotope systematics and origin of two fluorite lodes, Sierras Pampeanas, Argentina. Int Geol Rev 39:948–954CrossRefGoogle Scholar
  51. Gaspar OC (2002) Mineralogy and sulfide mineral chemistry of the Neves Corvo ores, Portugal: insight into their genesis. Can Min 40:611–636CrossRefGoogle Scholar
  52. Goldhaber MB, Kaplan IR (1974) The sulfur cycle. In: Goldberg ED (ed) The sea. Wiley, New York, pp 569–655Google Scholar
  53. Goldhaber MB, Kaplan IR (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar Chem 9:95–143CrossRefGoogle Scholar
  54. Gonzalez F, Moreno C, Saez R, Clayton J (2002) Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): a palynological approach. J Geol Soc Lond 159:229–232CrossRefGoogle Scholar
  55. Grenne T, Slack JF (2003) Bedded jaspers of the Ordovician Løkken ophiolite, Norway: seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Mineral Deposita 38:625–639CrossRefGoogle Scholar
  56. Habicht KS, Canfield DE (2001) Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29:555–558CrossRefGoogle Scholar
  57. Hedenquist JW, Simmons SF, Giggenbach WF, Eldridge CW (1993) White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high sulfidation Cu and Au ore deposition. Geology 21:731–734CrossRefGoogle Scholar
  58. Henley RW, Truesdell AH, Barton PB, Whitney JA (1984) Fluid-mineral equilibria in hydrothermal systems. Rev Econ Geol 2; 267 pGoogle Scholar
  59. Heyl AV (1964) Enargite in zinc-lead deposits of Upper Mississippi Valley district. Am Mineral 49:1458Google Scholar
  60. Hoek J, Reysenbach A, Habicht K, Canfield DE (2004) The effect of temperature and hydrogen limited growth on the fractionation of sulfur isotopes by Thermodesulfatator indicus, a deep-sea hydrothermal vent sulfate-reducing bacterium. Trans AGU 85:B21A–0857Google Scholar
  61. Hornibrook ER, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64:1013–1027CrossRefGoogle Scholar
  62. Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem Trans 8:1CrossRefGoogle Scholar
  63. IAEA (2015) WISER: Water Isotope System for Data Analysis, Visualization and Electronic Retrieval. http://www.naweb.iaea.org/napc/ih/IHS_resources_isohis.html. Accessed Feb 2015
  64. IGME (1983) Hidrogeología del Parque Nacional de Doñana y su entorno. Instituto Geológico y Minero de España, Madrid, 120 p Google Scholar
  65. IGME (2010) Mapa Geológico de España E: 1/200000 Sevilla-Puebla de Guzman (75-74)Google Scholar
  66. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213CrossRefGoogle Scholar
  67. Johnson CA, Emsbo P, Poole FG, Rye RO (2009) Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits. Geochim Cosmochim Acta 73:133–147CrossRefGoogle Scholar
  68. Kleikemper MH, Schroth SM, Bernasconi B, Brunner R, Zeyer J (2004) Sulfur isotope fractionation during growth of sulfate reducing bacteria on various carbon sources. Geochim Cosmochim Acta 23:4891–4904CrossRefGoogle Scholar
  69. Knight FC (2000) The mineralogy, geochemistry and genesis of the secondary sulphide mineralisation of the Las Cruces, Spain. PhD Thesis, University of Cardiff, pp 434Google Scholar
  70. Knight FC, Rickard D, Boyce AJ (1999) Multigenic origin for secondary enrichment in Las Cruces VMS deposit, Iberian Pyrite Belt In: Stanley et al. (eds) Mineral deposits: Processes to Processing. Balkema, pp 543-546Google Scholar
  71. Kojima S, Trista-Aguilera D, Hayashi K (2009) Genetic aspects of the manto-type copper deposits based on geochemical studies of North Chilean deposits. Resour Geol 59:87–98CrossRefGoogle Scholar
  72. Kosakevitch A, Palomero F, Leca X, Leistel J, Lenotre N, Sobol F (1993) Climatic and geomorphological controls on the gold concentrations of the Rio-Tinto gossans (Huelva province, Spain). CR Academie Sciences Serie II 316:85-90Google Scholar
  73. Kucha H, Viaene W (1993) Compounds with mixed and intermediate sulfur valences as precursors of banded sulfides in carbonate-hosted Zn-Pb deposits in Belgium and Poland. Mineral Deposita 28:13–21CrossRefGoogle Scholar
  74. Kucha H, Schroll E, Stumpfl EF (2005) Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineral Deposita 40:123–126CrossRefGoogle Scholar
  75. Kucha H, Schroll E, Raith JG, Halas S (2010) Microbial Sphalerite formation in carbonate-hosted Zn-Pb ores, Bleiberg, Austria: micro- to nanotextural and sulfur isotope evidence. Econ Geol 105:1005–1023CrossRefGoogle Scholar
  76. Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles and genetic models. Econ Geol 87:471–510CrossRefGoogle Scholar
  77. Leach DL, Viets JB, Foley-Ayuso N, Klein DP (1995) Mississippi Valley-type Pb-Zn deposits. Preliminary compilation of descriptive geoenvironmental mineral deposit models US Geological Survey Open-File Report 95-831: 234–243Google Scholar
  78. Leistel JM, Marcoux E, Thieblemont D, Quesada C, Sanchez A, Almodovar GR, Pascual E, Saez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the special issue. Mineral Deposita 33:2–30CrossRefGoogle Scholar
  79. Leverett P, McKinnon AR, Williams PA (2005) Supergene geochemistry of the Endeavor ore body, Cobar, NSW, and relationships to other deposits in the Cobar Basin. Proceedings Regolith 2005, p. 191–194Google Scholar
  80. Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313CrossRefGoogle Scholar
  81. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65CrossRefGoogle Scholar
  82. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175CrossRefGoogle Scholar
  83. Manzano M, Soler A, Carrera J, Custodio E (2004) Estudio Isotópico del Origen del Sulfato del Agua Subterránea en la Zona Afectada por el Vertido Minero de Aznalcóllar (SO España). Seminarios Sociedad Española de Mineralogía 1:71–88Google Scholar
  84. May ER (1977) Flambeau: a Precambrian supergene enriched massive sulfide deposit. University of Wisconsin, Geological and Natural History Survey 24 pGoogle Scholar
  85. McCrea JM (1959) On the isotopic chemistry of carbonates and the paleotemperature scale. J Phys Chem 18:849–857CrossRefGoogle Scholar
  86. Melcher F, Oberthur T, Rammlmair D (2006) Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu-Zn-Pb-Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geol Rev 28:32–56CrossRefGoogle Scholar
  87. Melchiorre EB, Enders MS (2003) Stable isotope geochemistry of copper carbonates at the Northwest Extension Deposit, Morenci district, Arizona: implications for conditions of supergene oxidation and related mineralization. Econ Geol 98:607–621Google Scholar
  88. Melchiorre EB, Williams PA (2001) Stable isotope characterization of the thermal profile and subsurface biological activity during oxidation of the Great Australia deposit, Cloncurry, Queensland, Australia. Econ Geol 96:1685–1693CrossRefGoogle Scholar
  89. Melchiorre EB, Criss RE, Rose TP (1999) Oxygen and carbon isotope study of natural and synthetic malachite. Econ Geol 94:245–259CrossRefGoogle Scholar
  90. Melendez-Hevia E, Alvarez del Buergo E (1996) Oil and gas resources of the Tertiary basins of Spain In: Friend PF, Dabrio CJ (eds) Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics. Cambridge University Press, pp 20-23Google Scholar
  91. Menor C, Tornos F, Fernandez Remolar D, Amils R (2010) Association between catastrophic paleovegetation changes at the Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits. Earth Planet Sci Lett 299:398–408CrossRefGoogle Scholar
  92. Miguelez NG, Tornos F, Velasco F, Videira JC (2011) The unusual supergene Las Cruces copper ore deposit. In: Barra F, Reich M, Campos E, Tornos F (eds) SGA Biennial Meeting Proceedings: Let’s talk Ore Deposits. Antofagasta, pp 832–834Google Scholar
  93. Miguélez NG, Mathur R, Tornos F, Velasco F, Cooper S (2012a) A copper isotope study in the rich Las Cruces ore deposit to trace a new mineralization style in the Iberian Pyrite Belt. Min Mag 75:1467Google Scholar
  94. Miguélez NG, Mathur R, Tornos F, Velasco F, Cooper S (2012b) A copper isotope study of the Las Cruces ore deposit and its comparison with Rio Tinto and Tharsis mineralizations of the Iberian PyriteBelt (SW Spain). Abstracts SEG Conference, LimaGoogle Scholar
  95. Moreno C (1993) Postvolcanic paleozoic of the Iberian Pyrite Belt: an example of basin morphologic control on sediment distribution in a turbidite basin. J Sediment Petrol 63:1118–1128CrossRefGoogle Scholar
  96. Moreno C, Sierra S, Saez R (1996) Evidence for catastrophism at the Famennian-Dinantian boundary in the Iberian Pyrite Belt. In: Strogen P, Somervilee ID, Jones GL (eds) Recent advances in Lower Carboniferous Geology. Geol Soc London, pp 153–162Google Scholar
  97. Moreno C, Capitan MA, Doyle M, Nieto JM, Ruiz F, Saez R (2003) Edad mínima del gossan de Las Cruces: implicaciones sobre la edad del inicio de los ecosistemas extremos en la Faja Pirítica Ibérica. Geogaceta 33:67–70Google Scholar
  98. Morris RC, Fletcher AB (1987) Increased solubility of quartz following ferrous-ferric iron reactions. Nature 330:558–561CrossRefGoogle Scholar
  99. Neal AL, Techkarnjanaruk S, Dohnalkova A, McCready D, Peyton BM, Geesey GG (2001) Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria. Geochim Cosmochim Acta 65:223–235CrossRefGoogle Scholar
  100. Ohmoto H (1986) Stable isotope geochemistry of ore deposits stable isotopes in high temperature geological processes. Rev Mineral 16:491–555Google Scholar
  101. Ohmoto H, Lasaga A (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745CrossRefGoogle Scholar
  102. Oliveira JT (1990) South Portuguese zone: introduction. Stratigraphy and synsedimentary tectonism. In: Dallmeyer RD, Martinez García E (eds) Premesozoic geology of Iberia. Springer Verlag, Heidelberg, pp 333–347CrossRefGoogle Scholar
  103. Oliveira V, Matos J, Bengala M, Silva N, Suosa P, Torres L (1998) Geology and geophysics as successful tools in the discovery of the Lagoa Salgada orebody (Sado Tertiary Basin-Iberian Pyrite Belt), Grandola, Portugal. Mineral Deposita 33:170–187CrossRefGoogle Scholar
  104. Oliveira DPS, Matos JX, Rosa CJP, Rosa DRN, Figueiredo MO, Silva TP, Guimaraes F, Carvalho JRS, Pinto AMM, Relvas JRMS, Reiser FKM (2011) The Lagoa Salgada Orebody, Iberian Pyrite Belt, Portugal. Econ Geol 106:1111–1128CrossRefGoogle Scholar
  105. Onezime J, Charvet J, Faure M, Chauvet A, Panis D (2002) Structural evolution of the southernmost segment of the West European Variscides: the South Portuguese Zone (SW Iberia). J Struct Geol 24:451–468CrossRefGoogle Scholar
  106. Paytan A (2000) Sulfate clues for the early history of atmospheric oxygen. Science 288:626–627CrossRefGoogle Scholar
  107. Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–1462CrossRefGoogle Scholar
  108. Pereira Z, Saez R, Pons JM, Oliveira JT, Moreno C (1996) Edad devónica (Struniense) de las mineralizaciones de Aznalcóllar (Faja Pirítica Ibérica) en base a palinología. Geogaceta 20:1609–1612Google Scholar
  109. Pereira Z, Matos J, Fernnades P, Oliveira JT (2008) Palynostratigraphy and systematic palynology of the Devonian and Carboniferous sucessions of the South Portuguese Zone, Portugal. Memorias do Instituto de Engenharia, Tecnologia e Inovaçao:181Google Scholar
  110. Polag D, Heuwinkel H, Laukenmann S, Greule M, Keppler F (2013) Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes. Isot Environ Health Stud 49:365–377CrossRefGoogle Scholar
  111. Potter R (1977) An electrochemical investigation of the system copper-sulfur. Econ Geol 72:1524–1542CrossRefGoogle Scholar
  112. Pracht J, Boenigk J, Isenbeck-Schröter M, Keppler F, Schöler HF (2001) Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 44:613–619CrossRefGoogle Scholar
  113. Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124CrossRefGoogle Scholar
  114. Quesada C (1998) A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt. Mineral Deposita 33:31–44CrossRefGoogle Scholar
  115. Rahmdor P (1980) The ore minerals and their intergrowths. Pergamon PressGoogle Scholar
  116. Raiswell R, Plant J (1980) The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England. Econ Geol 75:684–699CrossRefGoogle Scholar
  117. Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679CrossRefGoogle Scholar
  118. Reed M, Rusk B, Palandri J (2013) The Butte magmatic-hydrothermal system: one fluid yields all alteration and veins. Econ Geol 108:1379–1396CrossRefGoogle Scholar
  119. Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode PL, Gregg A, Parsons JE, Wakelin SA, Pring A, Hough R, Southam G, Brugger J (2010) Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology 38:843–846CrossRefGoogle Scholar
  120. Relvas J (1991) Estudo Geológico e Metalogenético da Área de Gavião, Baixo Alentejo Unpublished MSc thesis. University of Lisbon, Portugal, 248 p Google Scholar
  121. Révész K, Haiping Q (2007) Determination of the δ(34S/32S) of sulfate in water: RSIL Lab Code 1951. In: Révész K, Koplen TB (eds) Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, USGS Techniques and Methods, book 10, sec C, chap 10. pp 33Google Scholar
  122. Roland GW (1970) Phase relations below 575 degrees C in the system Ag-As-S. Econ Geol 65:241CrossRefGoogle Scholar
  123. Rosa CJP, McPhie J, Relvas JMRS (2010) Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt. J Volcanol Geotherm Res 194:107–126CrossRefGoogle Scholar
  124. Roseboom EH (1966) An investigation of the system Cu-S and some natural copper sulfides between 25 degrees and 700 degrees C. Econ Geol 61:641–672CrossRefGoogle Scholar
  125. Roveri M, Lugli S, Manzi V, Gennari R, Schreiber BC (2014) High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Mar Geol 349:113–125CrossRefGoogle Scholar
  126. Rudnicki MD, Elderfield H, Spiro B (2000) Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim Cosmochim Acta 65:777–789CrossRefGoogle Scholar
  127. Rye RO, Bethke PM, Wasserman MD (1992) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87:225–262CrossRefGoogle Scholar
  128. Sáenz de Galdeano C, Vera JA (1992) Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera. Basin Res 4:21–36CrossRefGoogle Scholar
  129. Sáez R, Almodovar GR, Pascual E (1996) Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol Rev 11:429–451CrossRefGoogle Scholar
  130. Salata GG, Roelke LA, Cifuentes LA (2000) A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem 69:153–161CrossRefGoogle Scholar
  131. Sánchez España J, Lopez Pamo E, Santofimia E, Diez Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287CrossRefGoogle Scholar
  132. Sato M (1960) Oxidation of sulfide orebodies. Econ Geol 55:928–961CrossRefGoogle Scholar
  133. Scheiber L, Ayora C, Vazquez-Suñe E, Cendón DI, Soler A, Custodio E, Baquero JC (2015) Recent and old groundwater in the Niebla-Posadas regional aquifer (southern Spain): implications for its management. J Hydrol 523:624–635CrossRefGoogle Scholar
  134. Scott KM, Ashley PM, Lawie DC (2001) The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn-Pb-Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. J Geochem Explor 72:169–191CrossRefGoogle Scholar
  135. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral Geochem 16:165–184Google Scholar
  136. Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104:1235–1248CrossRefGoogle Scholar
  137. Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology—one hundredth anniversary volume pp 723-768Google Scholar
  138. Silva JB, Oliveira JT, Ribeiro A (1990) Structural outline of the South Portuguese Zone. In: Dallmeyer RD, Martinez García E (eds) PreMesozoic geology of Iberia. Springer Verlag, Heidelberg, pp 348–362CrossRefGoogle Scholar
  139. Simmons SF, Christenson BW (1994) Origins of calcite in a boiling geothermal system. Am J Sci 294:361–400CrossRefGoogle Scholar
  140. Sood MK, Wagner RJ, Markazi HD (1986) Stratabound copper deposits in East South-Central Alaska: their characteristics and origin. In: Friedrich G, Genkin A, Naldrett A, Ridge J, Sillitoe R, Vokes F (eds) Geology and metallogeny of copper deposits. Springer, Berlin, pp 422–442CrossRefGoogle Scholar
  141. Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084CrossRefGoogle Scholar
  142. Southam G, Lengke MF, Fairbrother L, Reith F (2009) The biogeochemistry of gold. Elements 5:303–307CrossRefGoogle Scholar
  143. Spiro B, Gibson PJ, Shaw HF (1993) Eogenetic siderites in lacustrine oil shales from Queensland. Australia. A stable isotope study. Chem Geol 106:415–427CrossRefGoogle Scholar
  144. Spycher NF, Reed MH (1989) Evolution of a Broadlands-type epithermal ore fluid along alternative P-T paths; implications for the transport and deposition of base, precious, and volatile metals. Econ Geol 84:328–359CrossRefGoogle Scholar
  145. Sracek O, Gélinas P, Lefebvre R, Nicholson RV (2006) Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada. J Geochem Explor 91:99–109CrossRefGoogle Scholar
  146. Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158CrossRefGoogle Scholar
  147. Strauss H, Schieber J (1990) A sulfur isotope study of pyrite genesis: the Mid-Proterozoic Newland Formation, Belt Supergroup, Montana. Geochim Cosmochim Acta 54:197–204CrossRefGoogle Scholar
  148. Taylor R (2011) Gossans and leached cappings—field assessment. Springer, 165 ppGoogle Scholar
  149. Taylor GF, Sylvester GC (1982) Analysis of a weathered profile on sulfide mineralization at Mugga Mugga, Western Australia. J Geochem Explor 16:105–134CrossRefGoogle Scholar
  150. Thieblemont D, Pascual E, Stein G (1998) Magmatism in the Iberian Pyrite Belt: petrological constraints on a metallogenic model. Mineral Deposita 33:98–110Google Scholar
  151. Titley SR, Beane RE (1981) Porphyry copper deposits. Part I: Geologíc settings, petrology and tectogenesis. In: Skinner BJ (ed) Econ Geol 75th Anniversary Volume, pp 214-234Google Scholar
  152. Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307CrossRefGoogle Scholar
  153. Tornos F, Gonzalez Clavijo E, Spiro BF (1998) The Filón Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt. Mineral Deposita 33:150–169CrossRefGoogle Scholar
  154. Tornos F, Solomon M, Conde C, Spiro BF (2008) Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: Geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214CrossRefGoogle Scholar
  155. Tornos F, Miguelez NG, Velasco F, Videira JC (2011) Biogenic supergene galena-rich ore in the Las Cruces deposit, Spain. Min Mag 75:2024Google Scholar
  156. Tornos F, Velasco F, Miguelez NG (2012a) The secondary high-grade Cu deposit of Las Cruces (S Spain): a VMS deposit with superimposed epithermal-like present-day mineralization. Abstracts European Mineralogical Conference, 1: EMC2012-251. FrankfurtGoogle Scholar
  157. Tornos F, Velasco F, Miguelez NG (2012b) Secondary vs supergene ore enrichment. The high grade Cu ores of Las Cruces mine (S Spain). Abstract SEG Conference LimaGoogle Scholar
  158. Tornos F, Velasco F, Miguelez NG, Escobar JM (2013) Polyphase secondary alteration and the formation of complex Cu and Pb-Ag-Au-rich assemblages, Las Cruces copper deposit, SW Spain Mineral Deposit Research for a High Tech World -12th SGA Biennial Meeting 2013 pp 587-589Google Scholar
  159. Tornos F, Velasco F, Menor-Salvan C, Delgado A, Slack JF, Escobar JM (2014) Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity. Nat Commun 5:4600. doi: 10.1038/ncomms5600 CrossRefGoogle Scholar
  160. Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in an Hercynian granite, Massif Central, France. Chem Geol 88:85–98CrossRefGoogle Scholar
  161. Valenzuela A, Donaire T, Gonzalez-Roldan MJ, Toscano M, Pascual E (2011a) Volcanic architecture in the Odiel river area and the volcanic environment in the Rio Tinto-Nerva Unit, Iberian Pyrite Belt, Spain. J Volcanol Geotherm Res 202:29–46CrossRefGoogle Scholar
  162. Valenzuela A, Donaire T, Pin C, Toscano M, Hamilton MA, Pascual E (2011b) Geochemistry and U-Pb dating of felsic volcanic rocks in the Riotinto-Nerva unit, Iberian Pyrite Belt, Spain: crustal thinning, progressive crustal melting and massive sulphide genesis. J Geol Soc 168:717–731CrossRefGoogle Scholar
  163. Velasco F, Sanchez España J, Boyce A, Fallick AE, Saez R, Almodovar GR (1998) A new sulphur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on some sulphur isotope compositions. Mineral Deposita 34:1–18CrossRefGoogle Scholar
  164. Velasco F, Herrero JM, Suarez S, Yusta I, Alvaro A, Tornos F (2013) Supergene features and evolution of the gossans capping the massive sulphide deposits of the Iberian Pyrite Belt. Ore Geol Rev 53:181–203CrossRefGoogle Scholar
  165. Viñals J, Roca A, Cruells M, Núñez C (1995) Characterization and cyanidation of Rio Tinto gossan ores. Can Metall Q 34:115–122CrossRefGoogle Scholar
  166. Williams D (1934) The geology of the Rio Tinto mines, Spain. Trans Inst Min Metall 43:b593–b678Google Scholar
  167. Winter LS, Tosdal RM, Mortensen JK, Franklin JM (2004) Volcanic stratigraphy and geochronology of the Cretaceous Lancones basin, Northwestern Peru: Position and timing of giant VMS Deposits. Econ Geol 105:713–742CrossRefGoogle Scholar
  168. Yapp CJ (1987) Oxygen and hydrogen isotope variations among goethites (α-FeOOH) and the determination of paleotemperatures. Geochim Cosmochim Acta 51:355–364CrossRefGoogle Scholar
  169. Yapp CJ (2007) Oxygen isotopes in synthetic goethite and a model for the apparent pH dependence of goethite–water 18O/16O fractionation. Geochim Cosmochim Acta 71:1115–1129CrossRefGoogle Scholar
  170. Yesares L, Nieto JM, Saez R, Almodovar GR, Videira JC (2011a) El Gossan de "Las Cruces" (Faja Piritica Ibérica): Litología y Evolución Mineralógica. Macla 13:225-226Google Scholar
  171. Yesares L, Nieto JM, Saez R, Almodovar GR, Videira JC (2011b) Enriquecimiento de Au-Ag-Hg en el Gossan de Las Cruces (Sevilla). Macla 15Google Scholar
  172. Yesares L, Sáez R, Nieto JM, de Almodóvar GR, Cooper S (2014) Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain). Ore Geol Rev 58:14–26CrossRefGoogle Scholar
  173. Yesares L, Sáez R, Nieto JM, De Almodovar GR, Gómez C, Escobar JM (2015) The Las Cruces deposit, Iberian Pyrite Belt, Spain. Ore Geol Rev 66:25–46CrossRefGoogle Scholar
  174. Zehnder AJB, Brock TD (1980) Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39:194–204Google Scholar
  175. Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091CrossRefGoogle Scholar
  176. Zierenberg RA, Schiffman P (1990) Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge. Nature 348:155–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centro de Astrobiología (CSIC-INTA)MadridSpain
  2. 2.Dpto. de Mineralogía y Petrología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco UPV/EHUBilbaoSpain
  3. 3.U.S. Geological Survey, National CenterRestonUSA
  4. 4.Laboratorio de Biogeoquímica de Isótopos EstablesInstituto Andaluz de Ciencias de la Tierra (CSIC-UGR)GranadaSpain
  5. 5.LeónSpain
  6. 6.Cobre Las Cruces S.A.SevilleSpain

Personalised recommendations