Advertisement

Mineralium Deposita

, Volume 51, Issue 7, pp 953–969 | Cite as

Geological, geochronological, geochemical, and Sr–Nd–O–Hf isotopic constraints on origins of intrusions associated with the Baishan porphyry Mo deposit in eastern Tianshan, NW China

  • Yinhong WangEmail author
  • Chunji Xue
  • Jiajun Liu
  • Fangfang Zhang
Article

Abstract

The Baishan porphyry Mo deposit (0.72 Mt; 0.06 % Mo) is located in the interior of the eastern Tianshan orogenic belt in Xinjiang, NW China. The deposit comprises 15 orebodies that are associated with monzogranite and granite porphyry stocks and are structurally controlled by roughly EW-trending faults. Secondary ion mass spectrometry (SIMS) zircon U–Pb dating of the monzogranite and granite porphyry yielded the Middle Triassic age (228 ± 2 to 227 ± 2 Ma), which coincide with the molybdenite Re–Os model ages ranging from 226 ± 3 to 228 ± 3 Ma. The Triassic monzogranite and granite porphyry belong to high-K calc-alkaline series and are characterized by high SiO2 and Al2O3 and low MgO, TiO2, and P2O5 concentrations, with negative Eu anomalies (δEu = 0.55–0.91). The least-altered monzogranite and granite porphyry yield uniform ε Nd(t) values from +1.6 to +3.6, and wide (87Sr/86Sr) i ratios ranging between 0.7035 and 0.7071, indicating that they were derived from the lower crust. In situ O–Hf isotopic analyses on zircon using SIMS and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) indicate that the δ18O and ε Hf(t) values of zircon from a monzogranite sample vary from 6.1 to 7.3 ‰ and +8.0 to +11.7, respectively, whereas zircon from a granite porphyry sample vary from 6.2 to 6.9 ‰ and +7.3 to +11.2, respectively. The geochemical and isotopic data imply that the primary magmas of the Baishan granite were likely derived from partial melts from the lower crust involving some mantle components. The Baishan Mo deposit and granitic emplacement were proposed to be most likely related to post-orogenic lithospheric extension and magmatic underplating. An extensional event coupled with the rising of hot mantle-derived melts triggered partial melting of the lower crust, as well as provided metals (Mo).

Keywords

Zircon U–Pb age Molybdenite Re–Os dating Sr–Nd–O–Hf isotopes Baishan porphyry Mo deposit Eastern Tianshan 

Notes

Acknowledgments

We are very grateful to Editor-in-Chief Georges Beaudoin, Associate Editor Rolf L. Romer, R. Trumbull, John L Walshe, and one anonymous reviewer for constructive comments and improvement of the manuscript. We thank Prof. Yusheng Zhai of the China University of Geosciences (Beijing) for a helpful scientific review of an earlier version of the manuscript. Thanks are given to the no. 6 Geological Party, Xinjiang Bureau of Geology and Mineral Exploration, for sampling and mapping in field. This research was jointly supported by the National Natural Science Foundation of China (41572066 and 41030423), the Fundamental Research Funds for the Central Universities (2652015019 and 2652015032), the Geological Survey Project of China (1212011085471 and 1212011220923), and the Major Basic Research Program of People’s Republic of China (2014CB440903).

Supplementary material

126_2016_646_MOESM1_ESM.docx (53 kb)
ESM 1 Analytical methods. (DOCX 53 kb)
126_2016_646_MOESM2_ESM.xlsx (18 kb)
ESM 2 SIMS zircon U–Pb data of the Baishan granites in eastern Tianshan. (XLSX 17 kb)
126_2016_646_MOESM3_ESM.docx (226 kb)
ESM 3 Zircon cathodoluminescence (CL) images and analysis spots from samples BS-1505-28 (a) and BS-1505-15 (b) from the Baishan porphyry Mo deposit. (DOCX 225 kb)
126_2016_646_MOESM4_ESM.xlsx (16 kb)
ESM 4 Whole-rock geochemical data of the Baishan granites in eastern Tianshan (major elements, wt.%; trace elements, ppm). (XLSX 16 kb)
126_2016_646_MOESM5_ESM.xlsx (19 kb)
ESM 5 Zircon Hf and O isotopic data of the Baishan granites in eastern Tianshan. (XLSX 18 kb)
126_2016_646_MOESM6_ESM.xlsx (10 kb)
ESM 6 Mesozoic geochronological data for ore deposits in eastern Tianshan. (XLSX 10 kb)

References

  1. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626CrossRefGoogle Scholar
  2. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbel IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  3. Blichert–Toft J, Albarède F (1997) The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258CrossRefGoogle Scholar
  4. Boynton WV (1984) Geochemistry of the rare earth elements, meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114CrossRefGoogle Scholar
  5. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans Roy Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  6. Chen XJ, Shu LS, Santosh M (2011) Late Paleozoic post-collisional magmatism in the Eastern Tianshan Belt, Northwest China: new insights from geochemistry, geochronology and petrology of bimodal volcanic rocks. Lithos 127:581–598CrossRefGoogle Scholar
  7. Chen HY, Yang JT, Baker M (2012a) Mineralization and fluid evolution of the Jiyuan polymetallic Cu–Ag–Pb–Zn–Au deposit, eastern Tianshan, NW China. Int Geol Rev 54:816–832CrossRefGoogle Scholar
  8. Chen YJ, Pirajno F, Wu G, Qi JP, Xiong XL (2012b) Epithermal deposits in North Xinjiang, NW China. Int J Earth Sci 101:889–917CrossRefGoogle Scholar
  9. Chiaradia M (2009) Adakite-like magmas from fractional crystallization and melting assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chem Geol 265:468–487CrossRefGoogle Scholar
  10. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  11. Deng J, Wang QF (2015) Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework. Gondwana Res. doi: 10.1016/j.gr.2015.10.003 Google Scholar
  12. Deng J, Wang QF, Li GJ, Li CS, Wang CM (2014a) Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res 26:419–437CrossRefGoogle Scholar
  13. Deng J, Wang QF, Li GJ, Santosh M (2014b) Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, Southwestern China. Earth-Sci Rev 138:268–299CrossRefGoogle Scholar
  14. Deng J, Wang CM, Santosh M (2014c) Orogenesis and metallogenesis in the Sanjiang Tethyan domain, China: preface. Gondwana Res 26:415–418CrossRefGoogle Scholar
  15. Drake MJ, Jones JH (1983) Partitioning of Re between metal and silicate phases. Meteoritics 18:291Google Scholar
  16. Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Richard MHS, John M, Dmitry M (2004) Preparation and certification of Re-Os dating reference materials: molybdenite HLP and JDC. Geostand Geoanal Res 28:41–52CrossRefGoogle Scholar
  17. Elhlou S, Belousova E, Griffin WL, Pearson NJ, O‘Reilly SY (2006) Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta 70:A158CrossRefGoogle Scholar
  18. Field D, Aring AR, Heim (1979) A geologically meaningless Rb-Sr total rock isochron. Nature 282:497–499CrossRefGoogle Scholar
  19. Fleet ME, Stone WE (1991) Partitioning of platinum-group elements in the Fe–Ni–S system and their fractionation in nature. Geochim Cosmochim Acta 55:245–253CrossRefGoogle Scholar
  20. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  21. Gao Y, Mao JW, Ye HS, Li FL, Li YF, Luo ZZ, Xiong BK, Meng F (2014) Geochronology, geochemistry and Sr–Nd–Pb isotopic constraints on the origin of the Qian’echong porphyry Mo deposit, Dabie orogen, east China. J Asian Earth Sci 85:163–177CrossRefGoogle Scholar
  22. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269CrossRefGoogle Scholar
  23. Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS, Yuan HL (2012) Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Res 21:88–99CrossRefGoogle Scholar
  24. Han CM, Xiao WJ, Zhao GC, Mao JW, Yang JM, Wang ZL, Yan Z, Mao QG (2006) Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia. Ore Geol Rev 29:77–94CrossRefGoogle Scholar
  25. Han CM, Xiao WJ, Zhao GC, Su BX, Ao SJ, Zhang J, Zhang ZY, Wan B, Wang ZM (2014) Tectonic implications of Re-Os dating of molybdenum deposits in the Tianshan–Xingmeng Orogenic Belt, Central Asia. Int Geol Rev 56:985–1006CrossRefGoogle Scholar
  26. He ZY, Zhang ZM, Zong KQ, Wang W, Santosh M (2012) Neoproterozoic granulites from the northeastern margin of the Tarim Craton: petrology, zircon U–Pb ages and implications for the Rodinia assembly. Precambrian Res 212–213:21–33CrossRefGoogle Scholar
  27. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62CrossRefGoogle Scholar
  28. Hu RZ, Zhou MF (2012) Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue. Mineral Deposita 47:579–588CrossRefGoogle Scholar
  29. Huang XW, Qi L, Gao JF, Zhou MF (2013a) First reliable Re–Os Ages of pyrite and stable isotope compositions of Fe(–Cu) deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China. Resour Geol 63:166–187CrossRefGoogle Scholar
  30. Huang XW, Zhou MF, Qi L, Gao JF, Wang YW (2013b) Re–Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic–hydrothermal Fe deposit, NW China. Mineral Deposita 48:925–946CrossRefGoogle Scholar
  31. Jahn BM, Wu FY, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ Sci Trans R Soc 91:181–193CrossRefGoogle Scholar
  32. Jong KD (2003) Very fast exhumation of high-pressure metamorphic rocks with excess 40Ar and inherited 87Sr, Betic Cordilleras, Southern Spain. Lithos 70:91–110CrossRefGoogle Scholar
  33. Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983CrossRefGoogle Scholar
  34. Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56:971–986CrossRefGoogle Scholar
  35. Leng CB, Zhang XC, Zhong H, Hu RZ, Zhou WD, Li C (2013) Re–Os molybdenite ages and zircon Hf isotopes of the Gangjiang porphyry Cu–Mo deposit in the Tibetan Orogen. Mineral Deposita 48:585–602CrossRefGoogle Scholar
  36. Li HQ, Wu H, Chen FW, Deng G, Yang HM (2005a) Isotopic chronological evidence for Yanshanian diagenetic mineralization in Baishan rhenium-molybdenum mine, East Tianshan. Acta Geol Sin 79:249–255 (in Chinese with English abstract)Google Scholar
  37. Li HQ, Chen FW, Lu YF, Yang HM, Guo J, Mei YP (2005b) New chronological evidence for Indosinian diagenetic mineralization in eastern Xinjiang, NW China. Acta Geol Sin 79:264–275 (in Chinese with English abstract)CrossRefGoogle Scholar
  38. Li HQ, Chen FW, Li JY, Qu WJ, Wang DH, Wu H, Deng G, Mei YP (2006) Age of mineralization and host rocks in the Baishan rhenium-molybdenum district, East Tianshan, Xinjiang, China: revisited. Geol Bull China 25:916–922 (in Chinese with English abstract)Google Scholar
  39. Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009a) Precise determination of Phanerozoic zircon Pb/Pb age by multi–collector SIMS without external standardization. Geochem Geophys Geosyst 10:1–21Google Scholar
  40. Li XH, Li WX, Wang XC, Li QL, Liu Y, Tang GQ (2009b) Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: in situ zircon Hf-O isotopic constraints. Sci China (Series D) 52:1262–1278CrossRefGoogle Scholar
  41. Li XH, Li WX, Wang XC, Li QL, Liu Y, Tang GQ, Wu FY (2010a) SIMS U–Pb zircon geochronology of porphyry Cu–Au–(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: magmatic response to early Cretaceous lithospheric extension. Lithos 119:427–438CrossRefGoogle Scholar
  42. Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC, Tao H (2010b) Penglai zircon megacrysts: a potentialnew working reference material for microbeam determination of Hf–O isotopesand U–Pb age. Geostand Geoanal Res 34:117–134CrossRefGoogle Scholar
  43. Li XH, Tang GQ, Guo B, Yang YH, Hou KJ, Hu ZC, Li QL, Liu Y, Li WX (2013) Qinghu zircon: a working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chin Sci Bull 36:4647–4654CrossRefGoogle Scholar
  44. Li HY, Ye HS, Wang XX, Yang L, Wang XY (2014) Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China. J Asian Earth Sci 79:641–654CrossRefGoogle Scholar
  45. Lu WW, Tan KB, Zhao XJ, Shi XJ, Wu F, Tan ZX (2013) Geological characteristics and prospecting of the Baishan molybdenum deposit in Hami, Xinjiang. Geotecton Metallog 37:42–48 (in Chinese with English abstract)Google Scholar
  46. Ludwig KR (2003) User’s manual for Isoplot 3.00, a geochronolgical toolkit for Microsoft Excel: Berkeley, CA, Geochronological Center Special Publication 4:25–32Google Scholar
  47. Ma XX, Shu LS, Meert JG (2015) Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids. Gondwana Res 27:228–243CrossRefGoogle Scholar
  48. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643CrossRefGoogle Scholar
  49. Mao JW, Zhang ZC, Zhang ZH, Du AD (1999) Re–Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the Northern Qilian mountains and its geological significance. Geochim Cosmochim Acta 63:1815–1818CrossRefGoogle Scholar
  50. Mao JW, Goldfarb RT, Wang YT, Hart CJ, Wang ZL, Yang JM (2005) Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China, characteristics and geodynamic setting. Episodes 28:1–14Google Scholar
  51. Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM, Zhang CQ (2008) A review of the Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): principal characteristics and ore-forming processes. J Asian Earth Sci 32:184–203CrossRefGoogle Scholar
  52. Misawa K, Tatsumoto M, Dalrymple GB, Yanai K (1993) An extremely low UPb source in the moon: U-Th-Pb, Sm-Nd, Rb-Sr, and 40Ar-39Ar isotopic systematics and age of lunar meteorite Asuka 881757. Geochim Cosmochim Acta 57:4687–4702CrossRefGoogle Scholar
  53. Morelli RM, Bell CC, Creaser RA, Simonetti A (2010) Constraints on the genesis of gold mineralization at the Homestake Gold Deposit, Black Hills, South Dakota from rhenium–osmium sulfide geochronology. Mineral Deposita 45:461–480CrossRefGoogle Scholar
  54. Peng ZA, Li HH, Qu WJ, Zhang SQ, Ding HJ, Chen XR, Zhang B, Zhang YZ, Xu M, Cai MH (2010) Molybdenite Re–Os age of Xiaohulishan molybdenum deposit in Beishan area, Inner Mongolia. Mineral Deposits 3:510–516 (in Chinese with English abstract)Google Scholar
  55. Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521CrossRefGoogle Scholar
  56. Pirajno F (2010) Intracontinental strike–slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay–Sayan (Siberia). J Geodyn 50:325–346CrossRefGoogle Scholar
  57. Pirajno F, Luo Z, Li H, Liu S, Dong L (1997) Gold deposits in eastern Tianshan, Northwestern China. Int Geol Rev 39:891–904CrossRefGoogle Scholar
  58. Pirajno F, Mao JW, Zhang ZC, Zhang ZH, Chai FM (2008) The association of mafic–ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J Asian Earth Sci 32:165–183CrossRefGoogle Scholar
  59. Pirajno F, Seltmann R, Yang YQ (2011) A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci Front 2:157–185CrossRefGoogle Scholar
  60. Qin KZ, Zhang LC, Xiao WJ, Xu XW, Yan Z, Mao JW (2003) Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao, JW, Goldfarb RJ, Seltmann R, Wang DW, Xiao WJ, Hart C (eds) Tectonic evolution and metallogeny of the Chinese Altay and Tianshan, London, pp 227–249Google Scholar
  61. Rapp RP, Shimizu N, Norman MD (1999) Applegate, reaction between slab–derived melt and peridotite in the mantle wedge: experimental constrains at 38 Gpa. Chem Geol 160:335–356CrossRefGoogle Scholar
  62. Rollinson HR (1993) Using geochemical data: evaluaiton, presentation, interdretation. Longman Scientific & Technical, New York, pp 1–352Google Scholar
  63. Seedorff E, Einaudi M (2004a) Henderson porphyry molybdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Econ Geol 99:3–37Google Scholar
  64. Seedorff E, Einaudi M (2004b) Henderson porphyry molybdenum system. Colorado: II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Econ Geol 99:39–72Google Scholar
  65. Selby D, Kelley KD, Hitzman MW, Zieg J (2009) Re–Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonatehosted copper deposits at Ruby Creek, Southern Brooks range, Alaska. Econ Geol 104:437–444CrossRefGoogle Scholar
  66. Shen P, Pan HD, Dong LH (2014) Yandong porphyry Cu deposit, Xinjiang, China—geology, geochemistry and SIMS U–Pb zircon geochronology of host porphyries and associated alteration and mineralization. J Asian Earth Sci 80:197–217CrossRefGoogle Scholar
  67. Shirey SB, Walker RJ (1995) Carius tube digestion for low-bank rhenium-osmium analysis. Anal Chem 67:2136–2141CrossRefGoogle Scholar
  68. Shu L, Wang B, Zhu W, Guo Z, Charvet J, Zhang Y (2011) Timing of initiation of extension in the Tianshan, based on structural, geochemical and geochronological analyses of bimodal volcanism and olistostrome in the Bogda Shan (NW China). Int J Earth Sci 100:1647–1663CrossRefGoogle Scholar
  69. Smoliar ML, Walker RJ, Morgan JW (1996) Re–Os ages of group IIA, IIIA, IVA and VIB iron meteorites. Science 271:1099–1102CrossRefGoogle Scholar
  70. Soderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324CrossRefGoogle Scholar
  71. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  72. Stein HJ, Hannah JL (1985) Movement and origin of ore fluids in climax-type systems. Geology 13:469–474CrossRefGoogle Scholar
  73. Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH, Malaviarachchi SPK (2011) U–Pb ages and Hf–O isotopes of zircons from Late Paleozoic mafic–ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Res 20:516–531CrossRefGoogle Scholar
  74. Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP, Xiao QH (2012) Subduction-induced mantle heterogeneity beneath Eastern Tianshan and Beishan: insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos 134:41–51CrossRefGoogle Scholar
  75. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geological Society Special Publication, London, pp 313–345Google Scholar
  76. Sun WD, Ding X, Hu YH, Zartman RE, Arculus RJ, Kamenetsky VS, Chen M (2011) The fate of subducted oceanic crust: a mineral segregation model. Int Geol Rev 53:879–893CrossRefGoogle Scholar
  77. Sun T, Qian ZZ, Deng YF, Li C, Song XY, Tang Q (2013) PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, Northwestern China. Econ Geol 108:1849–1864CrossRefGoogle Scholar
  78. Sun WD, Teng FZ, Niu YL, Tatsumi Y, Yang XY, Ling MX (2014) The subduction factory: geochemical perspectives. Geochim Cosmochim Acta 143:1–7CrossRefGoogle Scholar
  79. Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44CrossRefGoogle Scholar
  80. Tang DM, Qin KZ, Sun H, Su BX, Xiao QH (2012) The role of crustal contamination in the formation of Ni–Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China: evidence from trace element geochemistry, Re–Os, Sr–Nd, zircon Hf–O, and sulfur isotopes. J Asian Earth Sci 49:145–160CrossRefGoogle Scholar
  81. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:343–385Google Scholar
  82. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Pec WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580CrossRefGoogle Scholar
  83. Wang Q, Xu JF, Zhao ZH, Bao ZW, Xu W, Xiong XL (2004) Cretaceous high potassicium intrusive rocks in the Yueshan–Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochem J 38:417–434CrossRefGoogle Scholar
  84. Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ, Chen YW (2014) Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane: new constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos 208:202–219CrossRefGoogle Scholar
  85. Wang YH, Xue CJ, Liu JJ, Wang JP, Yang JT, Zhang FF, Zhao ZN, Zhao YJ, Liu B (2015a) Early carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: slab melting and implications for porphyry copper mineralization. J Asian Earth Sci 103:332–349CrossRefGoogle Scholar
  86. Wang YH, Xue CJ, Wang JP, Peng RM, Yang JT, Zhang FF, Zhao ZN, Zhao YJ (2015b) Petrogenesis of magmatism in the Yandong region of Eastern Tianshan, Xinjiang: geochemical, geochronological and Hf isotope constraints. Int Geol Rev 57:1130–1151CrossRefGoogle Scholar
  87. Wang YH, Xue CJ, Zhang FF, Liu JJ, Gao JB, Qi TJ (2015c) SHRIMP zircon U-Pb geochronology, geochemistry and H-O-Si-S-Pb isotope systematics of the Kanggur gold deposit in Eastern Tianshan, NW China: implication for ore genesis. Ore Geol Rev 68:1–13CrossRefGoogle Scholar
  88. Wang YH, Zhao CB, Zhang FF, Liu JJ, Wang JP, Peng RM, Liu B (2015d) SIMS zircon U–Pb and molybdenite Re–Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu–Mo deposit and granitoids in NE China and their geological significance. Gondwana Res 28:1228–1245CrossRefGoogle Scholar
  89. Wang YH, Xue CJ, Gao JB, Zhang FF, Liu JJ, Wang JP, Wang JC (2016) The genesis of the ores and granitic rocks at the Hongshi Au deposit in Eastern Tianshan, China: constraints from zircon U–Pb geochronology, geochemistry and isotope systematics. Ore Geol Rev 74:1130–1151Google Scholar
  90. Wilhem C, Windley BF, Stampfli GM (2012) The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Sci Rev 113:303–341CrossRefGoogle Scholar
  91. Wilson M (1989) Igneous petrogenesis. Unwim Hyman, London, pp 1–366CrossRefGoogle Scholar
  92. Windley BF, Allen MB, Zhang C, Zhao ZY, Wang GR (1990) Paleozoic accretion and Cenozoic red formation of the Chinese Tianshan range, Central Asia. Geology 18:128–131CrossRefGoogle Scholar
  93. Windley BF, Alexeiev D, Xiao WJ, Kroner A, Badarch G (2007) Tectonicmodels for accretion of the Central Asian Orogenic Belt. J Geol Soc Lond 164:31–47CrossRefGoogle Scholar
  94. Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and bad-deleyites used in U–Pb geochronology. Chem Geol 234:105–126CrossRefGoogle Scholar
  95. Xiao WJ, Zhang LC, Qin KZ, Sun S, Li JL (2004) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. Am J Sci 304:370–395CrossRefGoogle Scholar
  96. Xiao WJ, Windley BF, Allen MB, Han C (2013) Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res 23:1316–1341CrossRefGoogle Scholar
  97. Yogodzinski GM, Kelemen PB (1998) Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet Sci Lett 158:53–65CrossRefGoogle Scholar
  98. Yuan C, Sun M, Wilde S, Xiao W, Xu Y, Long X, Zhao G (2010) Post-collisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off. Lithos 119:269–288CrossRefGoogle Scholar
  99. Zhang LC, Ji JS, Qin KZ, Yang XK, Xie CJ, Feng CY (2003) Geological and geochemical features of Shiyingtan Permian low sulfidation epithermal gold deposit, eastern Tianshan, NW China. In: Mao, Goldfarb, Seltmann, Wang Xiao and Hart (Eds) Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. Proceedings Volume of the International Symposium on IGCP-473 project, AGOD Guidebook Series 10, CERCAMS/NHM London, pp 261–270Google Scholar
  100. Zhang LC, Xiao WJ, Qin KZ, Qu WJ, Du AD (2005) Re-Os isotopic dating of molybdenite and pyrite in the Baishan Mo-Re deposit, eastern Tianshan, NW China, and its geological significance. Mineral Deposita 39:960–969CrossRefGoogle Scholar
  101. Zhang LC, Xiao WJ, Qin KZ, Zhang Q (2006) The adakite connection of the Tuwu–Yandong copper porphyry belt, Eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry. Mineral Deposita 41:188–200CrossRefGoogle Scholar
  102. Zhang LC, Qin KZ, Xiao WJ (2008) Multiple mineralization events in the eastern Tianshan district, NW China: isotopic geochronology and geological significance. J Asian Earth Sci 32:236–246CrossRefGoogle Scholar
  103. Zhang DY, Zhou TF, Yuan F, Fan Y, Liu S, Qu WJ (2009) A genetic analysis of Baishan molybdenum deposit in East Tianshan area, Xinjiang. Mineral Deposita 28:663–672 (in Chinese with English abstract)Google Scholar
  104. Zhang FF, Wang YH, Liu JJ, Wang JP (2015) Zircon U–Pb and molybdenite Re–Os geochronology, Hf isotope analyses, and whole-rock geochemistry of the Donggebi Mo deposit, eastern Tianshan, Northwest China, and their geological significance. Int Geol Rev 57:446–462CrossRefGoogle Scholar
  105. Zhang FF, Wang YH, Liu JJ (2016a) Petrogenesis of Late Carboniferous granitoids in the Chihu area of Eastern Tianshan, NW China, and tectonic implications: geochronological, geochemical, and zircon Hf–O isotopic constraints. Int Geol Rev 58:949–966CrossRefGoogle Scholar
  106. Zhang FF, Wang YH, Liu JJ, Wang JP, Zhao CB, Song ZW (2016b) Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: constraints from geology, geochronology, geochemistry, and isotopic compositions. J Asian Earth Sci 117:208–224CrossRefGoogle Scholar
  107. Zhou JY, Zhang B, Zhang CW, Wei GY, Lu XJ, Li BH (1996) Geology of the silver, rhenium-molybdenum, gold and copper deposits in the eastern Tianshan and its adjacent regions. Geological Publishing House, Beijing, pp 105–133 (in Chinese)Google Scholar
  108. Zhou MF, Lesher CM, Yang ZX, Li JW, Sun M (2004) Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chem Geol 209:233–257CrossRefGoogle Scholar
  109. Zhou XM, Sun T, Shen WZ, Shu LS, Niu YL (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. J Int Geosci 29:26–33Google Scholar
  110. Zhou TF, Yuan F, Zhang DY, Fan Y, Liu S, Peng MX, Zhang JD (2010) Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, Eastern Tianshan, Xinjiang. Acta Petrol Sin 26:478–502 (in Chinese with English abstract)Google Scholar
  111. Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY, Yang YH (2009a) Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: constraints from zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopes. Sci China (Series D) 52:1223–1239CrossRefGoogle Scholar
  112. Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC, Liu B (2009b) Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt–peridotite interaction? J Asian Earth Sci 34:298–309CrossRefGoogle Scholar
  113. Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yinhong Wang
    • 1
    Email author
  • Chunji Xue
    • 1
  • Jiajun Liu
    • 1
  • Fangfang Zhang
    • 1
  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations