Mineralium Deposita

, Volume 51, Issue 7, pp 873–902 | Cite as

Fluid evolution in a volcanic-hosted epithermal carbonate–base metal–gold vein system: Alto de la Blenda, Farallón Negro, Argentina

  • M. Florencia Márquez-Zavalía
  • Christoph A. Heinrich


Alto de la Blenda is a ∼6.6-Ma intermediate-sulphidation epithermal vein system in the Farallón Negro Volcanic Complex, which also hosts the 7.1-Ma porphyry–Cu–Au deposit of Bajo de la Alumbrera. The epithermal vein system is characterised by a large extent and continuity (2 km × 400 m open to depth × 6 m maximum width) and an average gold grade of ∼8 g/t. The vein is best developed within an intrusion of a fine-grained equigranular monzonite, interpreted as the central conduit of a stratovolcano whose extrusive activity ended prior to porphyry–Cu–Au emplacement at Bajo de la Alumbrera, which is in turn cut by minor epithermal veins. The Alto de la Blenda vein consists predominantly of variably Mn-rich carbonates and quartz, with a few percent of pyrite, sphalerite, galena and other sulphide and sulphosalt minerals. Four phases of vein opening, hydrothermal mineralisation and repeated brecciation can be correlated between different vein segments. Stages 2 and 3 contain the greatest fraction of sulphide and gold. They are separated by the emplacement of a polymictic breccia containing clasts of quartz feldspar porphyry as well as basement rocks. Fluid inclusions in quartz related to stages 2 to 4 are liquid rich with 2–4 wt% NaCl(eq). They homogenise between 160 and 300 °C, with very consistent values within each assemblage. Vapour inclusions are practically absent in the epithermal vein. Quartz fragments in the polymictic breccia contain inclusions of intermediate to vapour-like density and similar low salinity (∼3 wt% NaCl(eq)), besides rare brine inclusions containing halite. Laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) analyses of epithermal inclusions indicate high concentrations of K, Fe, As, Sb, Cs, and Pb that significantly vary within and through subsequent vein stages. Careful consideration of detection limits for individual inclusions shows high gold concentrations of ∼0.5 to 3 ppm dissolved in the ore fluid, which contains variably high sulphur concentrations in excess over Fe and other chalcophile metals. Compositional variations are interpreted to reflect cooling and contraction of lower-density magmatic fluids at depth, like those preserved in porphyry clasts that were mechanically transported up by the polymictic breccia. Ore mineral precipitation from the magmatic fluid occurred by further cooling and possibly minor mixing with surface-derived water, leading to sulphide saturation, de-sulphidation of the magmatic fluid and consequent gold precipitation. The absence of flash boiling and/or reduction by carbonaceous host rocks has led to relatively modest but constant gold grades in the carbonate–base metal–gold veins of Alto de la Blenda.


Epithermal Gold Farallón Negro Volcanic Complex Alto de la Blenda Fluid evolution Ore mineralogy LA–ICP–MS 



This study was supported by CONICET of Argentina through a PIP 112-20120100554-CO grant. Field and analytical parts of this study were supported by the Swiss National Science Foundation grant 200020_135302. The authors are grateful to P. Černý for the microprobe access at the University of Manitoba; to M. Guillong and M. Wälle for their help obtaining the LA-ICP-MS data at ETH Zurich; to D. Meier for introducing MFMZ to the SILLS program; to Minera Alumbrera SA for their financial support and accomodation during the field trips to the FNVC and to the staff at YMAD and especially to the chief geologist, N. Montenegro, for their help during geological mapping and sampling at the Farallón Negro mine. The authors are very grateful for the constructive reviews of T. Ulrich and J. L. Mauk; the editorial handling of Associate Editor Dave Craw and the editorial comments of G. Beaudoin and are much appreciated.


  1. Alderete MC (1999) Distrito Farallón Negro-Alto de la Blenda, Catamarca. In: Zappettini EO (ed) Recursos Minerales de la República Argentina, SEGEMAR, Anales 35, Buenos Aires, pp 1637–1642Google Scholar
  2. Allison AE (1986) The geology of the Bajo El Durazno porphyry copper-gold prospect, Catamarca Province, Argentina. M.Sc. Dissertation, University of ArizonaGoogle Scholar
  3. Allmendinger RW (1986) Tectonic development, southeastern border of the Puna plateau. Geol Soc Am Bull 97:1070–1082CrossRefGoogle Scholar
  4. Allmendinger RW, Ramos VA, Jordan TE, Palma M, Isacks BL (1983) Paleogeography and Andean structural geometry, northwest Argentina. Tectonics 2:1–16CrossRefGoogle Scholar
  5. Angelelli V (1984) Yacimientos Metalíferos de la República Argentina II. Comisión de Investigaciones Científicas, Buenos Aires, pp 401–402Google Scholar
  6. Angera JA (1999) Mina Bajo de la Alumbrera, Catamarca. In Zapettini EO (ed) Recursos Minerales de la República Argentina, SEGEMAR, Anales 35, Buenos Aires, pp 1451–1461Google Scholar
  7. Armstrong JT (1993) Caltech 1993 JEOL license of CITZAF version 3.5Google Scholar
  8. Audétat A, Günther D, Heinrich CA (1998) Formation of a magmatic hydrothermal ore deposit; insights in with LA-ICP-MS analysis of fluid inclusions. Science 279:2091–2094CrossRefGoogle Scholar
  9. Audétat A, Pettke T, Heinrich CA, Bodnar RJ (2008) The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ Geol 103:877–908CrossRefGoogle Scholar
  10. Barazangi M, Isacks B (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692CrossRefGoogle Scholar
  11. Bevis M, Isacks B (1984) Hypocentral trend surface analysis: probing the geometry of the Benioff zones. J Geophys Res 89:6153–6170CrossRefGoogle Scholar
  12. Bodnar RJ, Vityk, MO (1994) Interpretation of microthermometric data for NaCl-H2O fluid inclusions. In: De Vovo B, Frenzzotti, ML (eds) Fluid inclusions in minerals: methods and applications. Short course of the working group (IMA) “Inclusions in Minerals”, Blacksburg, VA, USA, pp. 117/131Google Scholar
  13. Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid-inclusion systematics in epithermal systems. Rev Econ Geol 2:73–97Google Scholar
  14. Breitenmoser T (1999) Geology and geochemistry of the calc-alkaline Farallón Negro Volcanic Complex at Capillitas, NW-Argentina. MSc Thesis, ETH Zürich. 77 pp, 1 mapGoogle Scholar
  15. Brown KL (1986) Gold deposition from geothermal discharges in New Zealand. Econ Geol 81:979–983CrossRefGoogle Scholar
  16. Brown S (2004) Geología y mineralización del yacimiento de cobre-oro de Bajo de la Alumbrera. In: Márquez-Zavalía MF (ed) Curso Latinoamericano de Metalogenia UNESCO-SEG. Guía de campo, Mendoza, pp 101–120Google Scholar
  17. Browne PRL, Ellis AJ (1970) Ohaki-Broadlands hydrothermal area, New Zealand—mineralogy and related geochemistry. Am J Sci 269:97–131CrossRefGoogle Scholar
  18. Cahill T, Isacks B (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529CrossRefGoogle Scholar
  19. Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J Geophys Res 96:8113–8126CrossRefGoogle Scholar
  20. Cocker H, Mauk J, Rabone SC (2013) The origin of Ag–Au–S–Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand. Mineral Deposita 48:249–266CrossRefGoogle Scholar
  21. Corbett GJ, Leach TM (1998) Southwest Pacific rim gold-copper systems: structure, alteration, and mineralisation. Soc Econ Geol Spec Pub 6. 234 ppGoogle Scholar
  22. Coughlin TJ, O’Sullivan PB, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina: implications for the mechanism of plateau uplift in the Andes. Geology 26(11):999–1002CrossRefGoogle Scholar
  23. Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42(1):32–46CrossRefGoogle Scholar
  24. Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. In: Simmons ST (ed) Volcanic, geothermal and ore-forming fluids. Soc Econ Geol Spc Pub 10, pp 304–321Google Scholar
  25. Fielding EJ, Jordan TE (1988) Active deformation at the boundary between the Precordillera and Sierras Pampeanas, Argentina and comparison with ancient Rocky Mountain deformation. Geol Soc Am 171:143–163Google Scholar
  26. Franchini M, Impiccini A, Oleary S, Ríos FJ, Schalamuk IB (2009) Distribución de las alteraciones y mineralizaciones en la sección central del yacimiento Agua Rica (27°22'S-66°16'O), Catamarca. Rev Asoc Geol Argent 64:391–408Google Scholar
  27. Franchini M, Impiccini A, Lentz D, Ríos FJ, Oleary S, Pons J, Schalamuk IB (2011) Porphyry to epithermal transition in the Agua Rica polymetallic deposit, Catamarca, Argentina: an integrated petrologic analysis of ore and alteration parageneses. Ore Geol Rev 41:49–74CrossRefGoogle Scholar
  28. Franchini M, McFarlane C, Maydagán L, Reich M, Lentz DR, Meinert L, Bouhier V (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: textural features and metal zoning at the porphyry to epithermal transition. Ore Geol Rev 66:366–387CrossRefGoogle Scholar
  29. Gamarra-Urrunaga JE, Castroviejo R, Bernhardt H-J (2013) Preliminary mineralogy and ore petrology of the intermediate-sulfidation Pallancata deposit, Ayacucho, Peru. Can Mineral 51:67–91CrossRefGoogle Scholar
  30. Gimeno Torrente D, Carrazana A, Bruna Novillo J, Fernández Turiel JL (2011) Mineralogía del Prospecto Bajo Agua Tapada, Catamarca, Argentina. Macla 15:99–100Google Scholar
  31. Godeas M, Segal S (1980) Alteración hidrotermal y mineralización en el Bajo de la Alumbrera, provincia de Catamarca. Rev Asoc Geol Argent 35:318–331Google Scholar
  32. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Soc Sediment Geol, Short Course 31, Tulsa, OK, USAGoogle Scholar
  33. González OE (1975) Geología y alteración en el cobre porfídico “Bajo la Alumbrera”, República Argentina. II Congr Ibero-Am Geol Econ, Buenos Aires, pp 247–270Google Scholar
  34. González Bonorino F (1950a) Algunos problemas geológicos de las Sierras Pampeanas. Rev Asoc Geol Argent 5:81–110Google Scholar
  35. González Bonorino F (1950b) Geología y petrología de las hojas 12-D (Capillitas) y 13-D (Andalgalá): Dirección General de Industria y Minería, Bol 70, Buenos Aires. 92 ppGoogle Scholar
  36. Guilbert JM (1995) Geology, alteration, mineralization, and genesis of the Bajo de la Alumbrera porphyry copper-gold deposit, Catamarca province, Argentina. Ariz Geol Soc Dig 20:646–656Google Scholar
  37. Guillong M, Latkoczy C, Seo JH, Günther D, Heinrich CA (2008) Determination of sulfur in fluid inclusions by laser ablation ICP-MS. J Anal At Spectrom 23:1581–1589CrossRefGoogle Scholar
  38. Günther D, Audetat A, Frischknecht R, Heinrich CA (1998) Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 13(4):263–270CrossRefGoogle Scholar
  39. Halter WE, Bain N, Becker K, Heinrich CA, Landtwing MR, Von Quadt A, Clark AH, Sasso AM, Bissig T, Tosdal RM (2004) From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: the Farallón Negro Volcanic Complex, northwestern Argentina. J Volcanol Geotherm Res 136:1–30CrossRefGoogle Scholar
  40. Halter WE, Heinrich CA, Pettke T (2005) Magma evolution and the formation of porphyry Cu-Au ore fluids; evidence from silicate and sulphide melt inclusions. Mineral Deposita 39:845–863CrossRefGoogle Scholar
  41. Harris AC, Kamenetsky VS, White NC, van Achterbergh E, Ryan CG (2003) Melt inclusions in veins: linking magmas and porphyry Cu deposits. Science 302:2109–2111CrossRefGoogle Scholar
  42. Harris AC, Golding SD, White NC (2005) Bajo de la Alumbrera copper-gold deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ Geol 100:863–886CrossRefGoogle Scholar
  43. Harris AC, Bryan SE, Holcombe RJ (2006) Volcanic setting of the Bajo de la Alumbrera porphyry Cu-Au deposit, Farallon Negro Volcanics, Northwest Argentina. Econ Geol 101:71–94CrossRefGoogle Scholar
  44. Hedenquist JW, Henley RW (1985) The importance of CO2 on freezing-point measurements of fluid inclusions—evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406CrossRefGoogle Scholar
  45. Hedenquist JW, Reyes AG, Simmons SF, Taguchi S (1992) The thermal and geochemical structure of geothermal and epithermal systems—a framework for interpreting fluid inclusion data. Eur J Mineral 4:989–1015CrossRefGoogle Scholar
  46. Hedenquist JW, Arribas A Jr, Gonzalez-Urien E (2000) Exploration for epithermal gold deposits. Rev Econ Geol 13:245–277Google Scholar
  47. Heinrich CA (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineral Deposita 39:864–889CrossRefGoogle Scholar
  48. Heinrich CA (2006) How fast does gold trickle out of volcanoes? Science 314:263–264CrossRefGoogle Scholar
  49. Heinrich CA, Candela PA (2014) Fluids and ore formation in the Earth’s crust: treatise on Geochemistry, ed. 2:13, pp 1–28Google Scholar
  50. Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audetat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled plasma mass-spectrometry. Geochim Cosmochim Acta 67:3473–3497CrossRefGoogle Scholar
  51. Heinrich CA, Driesner T, Stefánsson A, Seward TM (2004) Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 32:761–764CrossRefGoogle Scholar
  52. Heinrich CA, Halter W, Landtwing MR, Pettke T (2005) The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions. Geol Soc Lond, Sp Publ 248, Fermor Vol, pp 247–263Google Scholar
  53. Heinrich CA, Meier D, Erni M, von Quadt A, Márquez-Zavalía MF (2011) Life-times and scales of Cu-Au-mineralizing magmatic-hydrothermal processes: Farallón Negro (Argentina). 11th Bienn SGA Meeting, Antofagasta, pp 3–6Google Scholar
  54. Hug A (1999) Petrography and genesis of the Capillitas diatreme, Farallón Negro Volcanic Complex, NW-Argentina. MSc Thesis, ETH Zürich. 74 ppGoogle Scholar
  55. JICA (Japan International Cooperation Agency) (1978–81) Informe de estudios básicos sobre la explotación de recursos minerales en la zona norte de la República Argentina (1978–81). Cuatro etapas. Dir Gen Fabr Mil, Unpublished report, Buenos AiresGoogle Scholar
  56. JICA (Japan International Cooperation Agency) (1986–89) Informe sobre Exploración Exploración Minera en la Zona de Alto de la Blenda, República Argentina. Fase I. YMAD, Catamarca, Unpublished reportGoogle Scholar
  57. Isacks B, Jordan T, Almendinger R, Ramos VA (1982) La segmentación tectónica de los Andes Centrales y su relación con la placa de Nazca subductada: V Congreso Latinoamericano de Geología, Actas III. Buenos Aires, pp 587–606Google Scholar
  58. Jones JP (1994) The Farallón Negro Bajo de la Alumbrera volcano-plutonic cluster. 7 Cong Geol Chileno 2:1571–1575Google Scholar
  59. Jones JP (1996) The Farallón Negro-Bajo de la Alumbrera volcano-plutonic cluster. 13 Cong Geol Argentino 3:17–27Google Scholar
  60. Jordan TE, Allmendinger RW (1986) The sierra pampeanas of Argentina: a modern analog of Rocky Mountain foreland deformation. Am J Sci 286:737–764CrossRefGoogle Scholar
  61. Jordan TE, Bryan LI, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94:341–361CrossRefGoogle Scholar
  62. Kay S, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposition of the Central Andes (22° to 33° S latitude). Soc Econ Geol Spec Publ 7:27–59Google Scholar
  63. Keith TEC, Muffler LJP (1978) Minerals produced during cooling and hydrothermal alteration of ash flow tuffs from Yellowstone Drill Hole Y-5. J Volcanol Geotherm Res 3:373–402CrossRefGoogle Scholar
  64. Kolitsch U (2010) The crystal structure and compositional range of mckinstryite. Mineral Mag 74:73–84CrossRefGoogle Scholar
  65. Koukharsky M, Mirré JC (1976) Mi Vida prospect: a porphyry copper type deposit in northwestern Argentina. Econ Geol 71:849–863CrossRefGoogle Scholar
  66. Kouzmanov K, Pokrovski GS (2012) Hydrothermal control on metal distribution in porphyry Cu (-Mo-Au) systems. SEG Spec Pub 16:573–618Google Scholar
  67. Landtwing MR, Dillenbeck ED, Leake MH, Heinrich CA (2002) Evolution of the breccia-hosted porphyry Cu-Mo-Au deposit at Agua Rica, Argentina: progressive unroofing of a magmatic hydrothermal system. Econ Geol 97:1273–1292CrossRefGoogle Scholar
  68. Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105:91–118CrossRefGoogle Scholar
  69. Lerchbaumer L, Audétat A (2012) High Cu concentrations in vapor-type fluid inclusions: an artifact? Geochim Cosmochim Acta 88:255–274CrossRefGoogle Scholar
  70. Lesage G, Richards JP, Muehlenbachs K, Spell TL (2013) Geochronology, geochemistry, and fluid characterization of the late Miocene Buriticá gold deposit, Antioquia Department, Colombia. Econ Geol 108:1067–1097CrossRefGoogle Scholar
  71. Linares E, González RA (1990) Catálogo de edades radimétricas de la República Argentina 1957–1987. Pub Especial Rev Asoc Geol Arg Serie B, 19Google Scholar
  72. Llambías EJ (1970) Geología de los Yacimientos Mineros Agua de Dionisio, Provincia de Catamarca, República Argentina. Rev Asoc Mineral Petrol Sedimentol 1:2–32Google Scholar
  73. Llambías EJ (1972) Estructura del Grupo Volcánico Farellón Negro, Catamarca, República Argentina. Rev Asoc Geol Argent 27:161–169Google Scholar
  74. Longerich HP, Günther D, Jackson SE (1996) Elemental fractionation in laser ablation inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem 355:538–542Google Scholar
  75. Márquez-Zavalía MF (1988) Mineralogía y génesis del yacimiento Capillitas (Catamarca, República Argentina). Ph.D Thesis, Universidad Nacional de Salta. 284 ppGoogle Scholar
  76. Márquez-Zavalía MF (1999) El yacimiento Capillitas, provincia de Catamarca In: Zappettini EO (ed) Recursos Minerales de la República Argentina. SEGEMAR, Anales 35, pp 1643–1652Google Scholar
  77. Márquez-Zavalía MF (2006) El extremo rico en As de la serie Jordanita-Geocronita de Capillitas, Catamarca, Argentina. Rev Asoc Geol Argent 61:231–235Google Scholar
  78. Márquez-Zavalía MF (2008) La rodocrosita de Mina Capillitas “Piedra” Nacional Argentina – Rosa del Inca. Sitios de Interés Geológico de la República Argentina. In: CSIGA (ed) Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino - SEGEMAR. Anales 46(I):85–98 (Spanish). Buenos AiresGoogle Scholar
  79. Márquez-Zavalía MF, Craig JR (2004) Telluride and precious metal mineralization at Mina Capillitas, Northwestern Argentina. Neues Jb Mineral Monat 2004(4):176–192CrossRefGoogle Scholar
  80. Márquez-Zavalía MF, Galliski MA (2007) Chatkalita, nekrasovita y otros minerales del grupo de la estannita de veta María Eugenia, Cerro Atajo, Catamarca, Argentina. Rev Asoc Geol Argent 62:289–298Google Scholar
  81. Marquez-Zavalía MF, Heinrich CA (2011) Porphyry-style to epithermal Cu-Au mineralization associated with the Farallón Negro Volcanic Complex, NW Argentina. SGA Conference Field Trip F5 Guide BookGoogle Scholar
  82. Martinez F, Fogliata A, Montenegro N, Hagemann SG (2011) Geology, mineralogy and geochemistry of the Au-Mn Farallón Negro Rama Norte vein in the epithermal low-sulfidation Farallón Negro deposit, Argentina. 11th Bienn SGA Meet, pp 726–728Google Scholar
  83. McBride SL (1972) A potassium-argon age investigation of igneous and metamorphic rocks from Catamarca and La Rioja provinces, Argentina. PhD Dissertation, Queen’s University, Kingston, CanadaGoogle Scholar
  84. McQueen HWS, Beaumont C (1989) Mechanical models of tilted block basins. In: Price RA (ed) IUGG-AGU Geophys Monogr 48, pp 25–32Google Scholar
  85. Meier DL (2008) Low-salinity fluids at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. MSc Thesis, ETH Zürich. 68 ppGoogle Scholar
  86. Meier DL, Heinrich CA, Guillong M, Marquez-Zavalía MF (2008) Low-salinity fluids at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. Swiss Geoscience Meeting 2008. Lugano, SwitzerlandGoogle Scholar
  87. Mendez V (1997) Yacimiento Bajo La Alumbrera, provincia de Catamarca, República Argentina. Rev Asoc Argent Geol Econ 11:15–30Google Scholar
  88. Mon R (1976) La tectonica del borde oriental de los Andes en las provincias de Salta, Tucumán y Catarnarca, República Argentina. Rev Asoc Geol Argent 31:65–72Google Scholar
  89. Montenegro N, Morales F (2004) Distrito mineralizado Farallón Negro. Yacimientos Mineros Agua de Dionisio, Belén, provincia de Catamarca, República Argentina. In: Márquez-Zavalía MF (ed) Curso Latinoamericano de Metalogenia UNESCO-SEG. Guía de campo, Mendoza, pp 83–99Google Scholar
  90. Mugas-Lobos AC, Márquez-Zavalía MF, Galliski MA (2012) Minerales de mena del depósito epitermal de baja sulfuración Don Sixto, Mendoza. Rev Asoc Geol Argent 69:3–12Google Scholar
  91. Müller D, Forrestal P (1998) The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca province, Argentina. Mineral Petrol 64:47–64CrossRefGoogle Scholar
  92. Müller D, Forrestal P (2000) The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca province, Argentina: a reply. Mineral Petrol 68:305–308CrossRefGoogle Scholar
  93. Navarro H (1986) Geología general y económica del pórfido de Cu-Mo “Mi Vida”. Rev Inst Geol Min. Jujuy, Argentina 6:127–154Google Scholar
  94. Peacor DR, Dunn PJ, Ramik RA, Sturman BD, Zeihen LG (1985) Philipsburgite, a new copper zinc arsenate hydrate related to kipushite, from Montana. Can Mineral 23:255–258Google Scholar
  95. Peirano A (1944) Agua de Dionisio. Un centro volcánico moderno en el distrito de Hualfín, departamento de Belén, provincia de Catamarca. Cuad Mineral Geol Tucumán 3:12Google Scholar
  96. Pettke T, Halter WE, Webster JD, Aigner-Torres M, Heinrich CA (2004) Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods. Lithos 78:333–361CrossRefGoogle Scholar
  97. Pettke T, Oberli F, Audetat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev 44:10–38CrossRefGoogle Scholar
  98. Pokrovski GS, Borisova AY, Harrichoury JC (2008) The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems. Earth Planet Sci Lett 266(3–4):345–362CrossRefGoogle Scholar
  99. Pouchou JL, Pichoir F (1985) “PAP” (ϕρZ) correction procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106Google Scholar
  100. Proffett JM (2003) Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Econ Geol 98:1535–1574CrossRefGoogle Scholar
  101. Putz H, Paar WH, Topa DA (2009) Contribution to the knowledge of the mineralization at mina Capillitas, Catamarca. Rev Asoc Geol Argent 64:514–524Google Scholar
  102. Quartino BJ (1962) Sobre la interpretación geológica del distrito volcánico de Farellón Negro (Provincia de Catamarca). 1 Cong Geol Argentino 2:267–278Google Scholar
  103. Ramos VA (1977) Basement tectonics from LANDSAT imagery in mining exploration. Geol Mijnbouw 56(3):243–252Google Scholar
  104. Ramos VA (1999) In: Caminos R (ed) Las Provincias Geológicas del Territorio Argentino. Geología Argentina, Buenos Aires, pp 41–96Google Scholar
  105. Rauchenstein-Martinek K, Wagner T, Wälle M, Heinrich CA (2014) Gold concentrations in metamorphic fluids: a LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem Geol 385:70–83CrossRefGoogle Scholar
  106. Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69(11):2781–2796CrossRefGoogle Scholar
  107. Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26CrossRefGoogle Scholar
  108. Richards JP (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci 6:911–916CrossRefGoogle Scholar
  109. Richards JP, Bray CJ, Channer DMD, Spooner ETC (1997) Fluid chemistry and processes at the Porgera gold deposit, Papua New Guinea. Mineral Deposita 32:119–132CrossRefGoogle Scholar
  110. Roco R, Koukharsky M (1999) El pórfiro cupro-molibdenífero Agua Rica y las manifestaciones hidrotermales asociadas, Catamarca. In: Zapettini EO (ed) Recursos Minerales de la República Argentina, SEGEMAR, Anales 35, Buenos Aires, pp 1479–1492Google Scholar
  111. Rojas N, Perelló J (2004) El yacimiento de Agua Rica, un depósito de cobre, molibdeno y oro, provincia de Catamarca, Argentina. In: Márquez-Zavalía MF (ed) Curso Latinoamericano de Metalogenia UNESCO-SEG. Guía de campo, Mendoza, pp 121–144Google Scholar
  112. Rusk BG, Reed M, Dilles JH (2008) Fluid inclusion evidence for magmatic–hydrothermal fluid evolution in the porphyry copper–molybdenum deposit, Butte, Montana. Econ Geol 103:307–334CrossRefGoogle Scholar
  113. Salado Paz N, Fogliata AS, Avila JC, Montenegro N (2011) Veta Esperanza Sudeste, un caso particular de enriquecimiento Supergénico en el yacimiento Alto de la blenda, distrIto minero Agua de Dionisio, provincia de Catamarca. Rev Asoc Geol Argent 68:185–194Google Scholar
  114. Sasso AM (1997) Geological evolution and metallogenetic relationships of the Farallón Negro Volcanic Complex, NW Argentina. Ph.D Dissertation, Queen’s University, Kingston, CanadaGoogle Scholar
  115. Sasso AM, Clark AH (1998) The Farallón Negro group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu-Au metallogeny in the Andean back-arc. SEG Newsl 34(1):8–18Google Scholar
  116. Sasso AM, Clark AH (1999) El Grupo Farallón Negro: Evolución magmática, hidrotermal y tectónica e implicancias para la metalogenia de cobre-oro en el retroarco andino, Catamarca. In: Zapettini EO (ed) Recursos Minerales de la República Argentina, SEGEMAR, Anales 35, Buenos Aires, pp 1437–1450Google Scholar
  117. Scott SD, Barnes HL (1971) Sphalerite geothermometry and geobarometry. Econ Geol 66:653–669CrossRefGoogle Scholar
  118. Seo JH, Heinrich CA (2013) Selective copper diffusion into quartz-hosted vapor inclusions: evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation. Geochim Cosmochim Acta 113:60–69CrossRefGoogle Scholar
  119. Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CA (2011) Microanalysis of S, Cl and Br in fluid inclusions by LA-ICP-MS. Chem Geol 284:35–44Google Scholar
  120. Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68:799–815CrossRefGoogle Scholar
  121. Sillitoe RH (1976) Andean mineralization: a model for the metallogeny of convergent plate margins. Geol Assoc Can Spec Pap 14:59–100Google Scholar
  122. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41CrossRefGoogle Scholar
  123. Sillitoe RH, Hedenquist J (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. Soc Econ Geol Spec Publ 10:315–343Google Scholar
  124. Simmons SF, Brown KL (2006) Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science 314(5797):288–291CrossRefGoogle Scholar
  125. Simmons SF, Brown KL (2007) The flux of gold and related metals through a volcanic arc, Taupo Volcanic Zone, New Zealand. Geology 35:1099–1102CrossRefGoogle Scholar
  126. Simpson MP, Palinkas SS, Mauk JL, Bodnar RJ (2015) Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki Goldfield, New Zealand. Econ Geol 110:763–786CrossRefGoogle Scholar
  127. Sister RG (1963) Informe geológico-económico de Farallón Negro y zona adyacente, distrito Hualfín, dpto. Belén, provincia de Catamarca. Opera Lilloana 8:1–164Google Scholar
  128. Sister RG (1965) Proyecto Minero Industrial Farallón Negro. Anexo I: Informe geológico. Informe YMAD (unpublished), TucumánGoogle Scholar
  129. Stefánsson A, Seward TM (2004) Gold(I) complexing in aqueous sulphide solutions to 500_C at 500 bar. Geochim Cosmochim Acta 68:4121–4143CrossRefGoogle Scholar
  130. Suchomel BJ (1983) An economic geologic evaluation of the Bajo de Agua Tapada base and precious metal prospect, Catamarca province, Argentina. U. N. Dev Program, New YorkGoogle Scholar
  131. Ulrich T, Heinrich CA (2002) Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina. Econ Geol 97:1865–1888CrossRefGoogle Scholar
  132. Ulrich T, Günther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679CrossRefGoogle Scholar
  133. Ulrich T, Günther D, Heinrich CA (2002) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 97:1889–1920CrossRefGoogle Scholar
  134. Viramonte JG, Galliski MA, Araña Saavedra V, Aparicio A, García Cacho L, Martín Escorza C (1984) El finivulcanismo básico de la depresión de Arizaro, provincia de Salta. 9 Cong Geol Argentino 3:234–251Google Scholar
  135. Von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39:731–734CrossRefGoogle Scholar
  136. Wall V (1997) Bajo de la Alumbrera (Argentina). A world class copper-gold deposit. Rev Asoc Argent Geol Econ 11:92–93Google Scholar
  137. Wallier S, Rey R, Kouzmanov K, Pettke T, Heinrich CA, Leary S, O’Connor G, Tamas CG, Vennemann T, Ullrich T (2006) Magmatic fluids in the breccia-hosted epithermal Au-Ag deposit of Roşia Montană, Romania. Econ Geol 101:923–954CrossRefGoogle Scholar
  138. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  139. Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6:917–925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Florencia Márquez-Zavalía
    • 1
    • 2
  • Christoph A. Heinrich
    • 3
  1. 1.IANIGLA, CCT Mendoza, CONICETMendozaArgentina
  2. 2.Mineralogía y Petrología, FADUniversidad Nacional de Cuyo, Centro UniversitarioMendozaArgentina
  3. 3.Institute of Geochemistry and Petrology, Department of Earth SciencesETH ZurichZurichSwitzerland

Personalised recommendations