Mineralium Deposita

, Volume 51, Issue 6, pp 725–748 | Cite as

The Marianas-San Marcos vein system: characteristics of a shallow low sulfidation epithermal Au–Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina

  • Conrado Permuy Vidal
  • Diego M. Guido
  • Sebastián M. Jovic
  • Robert J. Bodnar
  • Daniel Moncada
  • Joan Carles Melgarejo
  • Willis Hames


The Cerro Negro district, within the Argentinian Deseado Massif province, has become one of the most significant recent epithermal discoveries, with estimated reserves plus resources of ∼6.7 Moz Au equivalent. The Marianas-San Marcos vein system contains about 70 % of the Au–Ag resources in the district. Mineralization consists of Upper Jurassic (155 Ma) epithermal Au- and Ag-rich veins of low to intermediate sulfidation style, hosted in and genetically related to Jurassic intermediate composition volcanic rocks (159–156 Ma). Veins have a complex infill history, represented by ten stages with clear crosscutting relationships that can be summarized in four main episodes: a low volume, metal-rich initial episode (E1), an extended banded quartz episode with minor mineralization (E2), a barren waning stage episode (E3), and a silver-rich late tectonic–hydrothermal episode (E4). The first three episodes are interpreted to have formed at the same time and probably from fluids of similar composition: a 290–230 °C fluid dominated by meteoric and volcanic waters (−3‰ to −0‰ δ18Owater), with <3 % NaCl equivalent salinity and with a magmatic source of sulfur (−1 to −2 ‰ δ34Swater). Metal was mainly precipitated at the beginning of vein formation (episode 1) due to a combination of boiling at ∼600 to 800 m below the paleowater table, and associated mixing/cooling processes, as evidenced by sulfide-rich bands showing crustiform-colloform quartz, adularia, and chlorite-smectite banding. During episodes 2 and 3, metal contents progressively decrease during continuing boiling conditions, and veins were filled by quartz and calcite during waning stages of the hydrothermal system, and the influx of bicarbonate waters (−6 to −8.5 ‰ δ18Owater). Hydrothermal alteration is characterized by proximal illite, adularia, and silica zone with chlorite and minor epidote, intermediate interlayered illite-smectite and a distal chlorite halo. This assemblage is in agreement with measured fluid inclusion temperatures. A striking aspect of the Marianas-San Marcos vein system is that the high-grade/high-temperature veins are partially covered by breccia and volcaniclastic deposits of acidic composition, and are spatially associated with hot spring-related deposits and an advanced argillic alteration blanket. A telescoped model is therefore proposed for the Marianas-San Marcos area, where deeper veins were uplifted and eroded, and then partially covered by non-explosive, post-mineral rhyolitic domes and reworked volcaniclastic deposits, together with shallow geothermal features. The last tectonic–hydrothermal mineralization episode (E4), interpreted to have formed at lower temperatures, could be related to this late tectonic and hydrothermal activity.


Epithermal Quartz vein Jurassic Patagonia Argentina 



This research was part of a PhD thesis carried out at the Universidad National de La Plata (UNLP) with the support of CONICET, UNLP, and Goldcorp Inc. mining company. We thank Gassaway Brown, Damián Echavarría, and the rest of the Cerro Negro staff for their assistance and access to data. We also want to thank Ramiro Lopez for permission to publish the U-Pb geochronology data from his unpublished PhD thesis. Finally, we appreciate the support given by Gerardo Páez, Kathy Campbell, Stuart Simmons, and Andreas Dietrich for very helpful comments and reviews.

Supplementary material

126_2015_633_MOESM1_ESM.docx (30 kb)
ESM 1 Summary of electron microprobe results from ore minerals at the Marianas-San Marcos veins. (DOCX 29.8 kb)
126_2015_633_MOESM2_ESM.docx (135 kb)
ESM 2 a XRD analysis from clay minerals in stage 1 bandings, with chlorite-smectite (C-S) peaks. b XRD analysis of clay minerals from the alteration zone closer to the vein, with chlorite (Chl) and illite (Ill) peaks. (DOCX 134 kb)
126_2015_633_MOESM3_ESM.pdf (3.3 mb)
ESM 3 Data for statistical determination of 40Ar/39Ar ages and photographs of the Marianas-San Marcos vein samples selected for separation of adularia. (PDF 3.33 mb)
126_2015_633_MOESM4_ESM.pdf (470 kb)
ESM 4 U–Pb geochronological data from volcanic units of western Cerro Negro district. Modified from Lopez (2006) PhD thesis. (PDF 470 kb)


  1. Alric V, Haller M, Feraud G, Bertrand H, Zubia M (1996) Cronología 40Ar/39Ar del Vulcanismo Jurásico de la Patagonia Extraandina. XIII Congreso de Exploración de Hidrocarburos. Acta 5:243–251Google Scholar
  2. Arribas A Jr, Schalamuk IB, de Barrio R, Fernández R, Itaya T (1996) Edades Radimétricas de Mineralizaciones Epitermales Auríferas del Macizo del Deseado, Provincia de Santa Cruz, Argentina. IGCP Project 342: age and isotopes of South American Ores. Acta XXXIX Congreso Bras Geol 6:254–257Google Scholar
  3. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684CrossRefGoogle Scholar
  4. Bodnar RJ (2003) Introduction to aqueous fluid systems. In: Samson I, Anderson A Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral. Assoc. Canada, Short Course 32, 81–99Google Scholar
  5. Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals, methods and applications. Virginia Tech, Blacksburg, pp 117–130Google Scholar
  6. Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid-inclusion systematics in epithermal systems. Rev Econ Geol 2:73–97Google Scholar
  7. Brathwaite RL, Faure K (2002) The Waihi epithermal gold-silver base metal sulfide quartz vein system, New Zealand: temperature and salinity controls on electrum and sulfide deposition. Econ Geol 97:269–290CrossRefGoogle Scholar
  8. Brown KL (1986) Gold deposition from geothermal discharges in New Zealand. Econ Geol 81:979–983CrossRefGoogle Scholar
  9. Browne PRL, Ellis AJ (1970) The Ohaki-Broadlands geothermal area, New Zealand: mineralogy and related geochemistry. Am J Sci 269:97–131CrossRefGoogle Scholar
  10. Browne PR, Lawless J (2001) Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Sci Rev 52:299–331CrossRefGoogle Scholar
  11. Browne PRL, Courtney SF, Wood CP (1989) Formation of calc- silicate minerals deposited inside drillhole casing, Ngatamariki geothermal field, New Zealand. Am Mineral 74:759–763Google Scholar
  12. Cas RAF, Wright JV (1988) Volcanic successions modern and ancient. Springer, Netherlands, 528p Google Scholar
  13. Channing A, Zamuner AB, Zúñiga A (2007) A new Middle–Late Jurassic flora and hot spring chert deposit from the Deseado Massif, Santa Cruz province, Argentina. Geol Mag 144:401–411CrossRefGoogle Scholar
  14. Christiansen RL, Lowenstern JB, Smith RB, Heasler H, Morgan LA, Nathenson M, Mastin LG, Muffler LJP, Robinson JE (2007) Preliminary assessment of volcanic and hydrothermal hazards in Yellowstone National Park and vicinity: U.S. Geological Survey Open-file Report 2007-1071, 94 pGoogle Scholar
  15. Clayton RN, Mayeda T (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:47–52CrossRefGoogle Scholar
  16. Corbett G, Leach T (1997) Southwest pacific gold–copper systems: structure, alteration and mineralization. In: Corbett, Leach (Ed) Short Course Manual 225 ppGoogle Scholar
  17. Cravero F, Domínguez E, Murray H (1991) Valores δ18O en caolinitas indicadoras de un clima templado húmedo para el Jurásico superior-Cretácico inferior de la Patagonia. Rev Asoc Geol Argent 46(1–2):20–25Google Scholar
  18. de Barrio R, Panza JL, Nullo F (1999) Jurásico y Cretácico del Macizo del Deseado, provincia de Santa Cruz. In: Caminos R (ed) Geol Argent 29 (17):511–527Google Scholar
  19. Dietrich A, Gutierrez R, Nelson EP, Layer PW (2012) Geology of the epithermal Ag–Au Huevos Verdes vein system and San José district, Deseado massif, Patagonia, Argentina. Mineral Deposits 47(3):233–249CrossRefGoogle Scholar
  20. Dong G, Morrison GW, Jaireth S (1995) Quartz textures in epithermal veins, Queensland: classification, origin and implications. Econ Geol 90:1841–1856CrossRefGoogle Scholar
  21. Dubé B, Zubia M, Dunning G, Villeneuve M (2003) Estudio geocronológico de los campos filoneanos de baja sulfuración hospedados en la formación Chon Aike en el Macizo del Deseado, Provincia de Santa Cruz. In: Zubia M, Genini A (eds) Yacimientos auroargentíferos epitermales del Macizo del Deseado, Provincia de Santa Cruz. SEGEMAR Serie Contrib- uciones Técnicas Recursos Minerales 13/D, pp 17–24Google Scholar
  22. Ebert S, Rye R (1997) Secondary precious metal enrichment by steam-heated fluids in the Crofoot-Lewis hot spring gold-silver deposit and relation to paleoclimate. Econ Geol 92:578–600CrossRefGoogle Scholar
  23. Echavarría LE, Schalamuk IB, Etcheverry RO (2005) Geologic and tectonic setting of Deseado Massif epithermal deposits, Argentina, based on El Dorado–Monserrat. J S Am Earth Sci 19:415–432CrossRefGoogle Scholar
  24. Echeveste H (2005) Travertines and jasperoids of the Manantial Espejo, a Jurassic hot spring environment. Macizo del Deseado, Santa Cruz province, Argentina. Lat Am J Sedimentol Basin Anal 12:23–39Google Scholar
  25. Echeveste H, Fernandez R, Bellieni G, Tessone M, Llambias E, Schalamuk I, Piccirillo E, Demin A (2001) Relaciones entre las Formaciones Bajo Pobre y Chon Aike (Jurásico medio a superior) en el área de Estancia El Fénix–Cerro Huemul, zona centro-occidental del Macizo del Deseado, provincia de Santa Cruz. Rev Asoc Geol Argent 56(4):548–558Google Scholar
  26. Einaudi MT, Hedenquist JW, Esra Inan E (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. SEG Spec Pub 10:285–313Google Scholar
  27. Faure K, Matsuhisa Y, Metsugi H, Mizota C, Hayashi S (2002) The Hishikari Au-Ag epithermal deposit, Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Econ Geol 97:481–498CrossRefGoogle Scholar
  28. Féraud G, Alric V, Fornari M, Bertrand H, Haller M (1999) 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth Planet Sci Lett 172:83–96CrossRefGoogle Scholar
  29. Fernández RR, Blesa A, Moreira P, Echeveste H, Mykietiuk K, Andrada De Palomera P, Tessone M (2008) Los depósitos de oro y plata vinculados al magmatismo jurásico de la Patagonia: revisión y perspectivas para la exploración. Rev Asoc Geol Argent 63(4):665–681Google Scholar
  30. Feruglio E (1949) Descripción geológica de la Patagonia. 3 Volúmenes, Dirección Nacional de Yacimientos Petrolíferos Fiscales, Buenos AiresGoogle Scholar
  31. Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest: U.S. Geological Survey Professional Paper 440-KK: 12 pGoogle Scholar
  32. Giacosa R, Zubia M, Sánchez M, Allard J (2010) Meso-Cenozoic tectonics of the southern Patagonian foreland: structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina). J S Am Earth Sci 30:134–150CrossRefGoogle Scholar
  33. Giggenbach WF (1992) Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ Geol 87:1927–1944Google Scholar
  34. Gilligan L, Marshall B (1987) Textural evidence for remobilization in metamorphic environments. Ore Geol Rev 2:205–229CrossRefGoogle Scholar
  35. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals: SEPM Short Course Notes, 31: 199pGoogle Scholar
  36. Gu L, Zheng Y, Tang X, Zaw K, Della-pasque F, Wu C, Tian Z, Lu J, Ni P, Li X, Yang F, Wang X (2007) Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, N.E. China. Ore Geol Rev 30:1–29CrossRefGoogle Scholar
  37. Guido D (2002) Geología y metalogénesis del sector oriental del Macizo del Deseado, provincia de Santa Cruz. PhD thesis, Universidad Nacional de La Plata, La Plata, Argentina, 226 pp. Available at: http://sedici.unlp.edu.ar/handle/10915/4617
  38. Guido DM (2004) Subdivisión litofacial e interpretación del volcanismo jurásico (Grupo Bahía Laura) en el este del Macizo del Deseado, provincia de Santa Cruz. Rev Asoc Geol Argent 50:727–742Google Scholar
  39. Guido DM, Campbell KA (2011) Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): characteristics and controls on regional distribution. J Volcanol Geotherm Res 203:35–47CrossRefGoogle Scholar
  40. Guido DM, Campbell KA (2012) Diverse subaerial and sublacustrine hot spring settings of the Cerro Negro epithermal system (Jurassic, Deseado Massif), Patagonia, Argentina. J Volcanol Geotherm Res 229–230:1–12CrossRefGoogle Scholar
  41. Guido DM, Campbell KA (2014) A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina. J Volcanol Geotherm Res 275:61–70CrossRefGoogle Scholar
  42. Guido DM, Schalamuk IB (2003) Genesis and exploration potential of epithermal deposits from the Deseado Massif, Argentinean Patagonia. In: Eliopoulos et al (eds) Mineral exploration and sustainable development. Balkema, Rotterdam, pp 493–496Google Scholar
  43. Guido DM, De Barrio R, Schalamuk I (2002) La Marciana Jurassic sinter implications for exploration for epithermal precious-metal deposits in the Deseado Massif, southern Patagonia, Argentina. Trans Inst Min Metall 111:106–113Google Scholar
  44. Guido DM, Escayola M, de Barrio RE, Schalamuk IB, Franz G (2006) La Formación Bajo Pobre (Jurásico) en el este del Macizo del Deseado, Patagonia Argentina: Vinculación con el Grupo Bahía Laura. Rev Asoc Geol Argent 61(2):187–196Google Scholar
  45. Haas J (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ Geol 66:940–946CrossRefGoogle Scholar
  46. Hechem J, Homovc J (1987) Facies y paleoambientes volcaniclásticos en el Nesocratón del Deseado. Bol Informaciones Petroleras 16:2–23Google Scholar
  47. Hedenquist JW, Henley RW (1985a) The importance of CO on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406CrossRefGoogle Scholar
  48. Hedenquist JW, Henley RW (1985b) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand; their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80:1640–1668CrossRefGoogle Scholar
  49. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527CrossRefGoogle Scholar
  50. Hedenquist JW, Izawa E, Arribas Jr A, White NC (1996) Epithermal gold deposits: styles, characteristics, and exploration. Poster and booklet, Resource Geology Spec Pub 1, 17 ppGoogle Scholar
  51. Hedenquist J, Arribas R, Gonzalez Urien E (2000) Exploration for epithermal gold deposits. Econ Geol 13:245–277Google Scholar
  52. Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67:3473–3497CrossRefGoogle Scholar
  53. Hobbs BE (1987) Principles involved in mobilization and remobilization. Ore Geol Rev 2:37–45CrossRefGoogle Scholar
  54. Jovic SM, Jovic NR, Guido DM, Schalamuk IB (2008) Caracterización de cuerpos intrusivos de la formación Cerro León en el área del Anticlinal el Tranquilo, Macizo del Deseado, Santa Cruz. XVII Congreso Geológico Argentino. Actas (2):851–852Google Scholar
  55. Jovic SM, Guido DM, Schalamuk IB, Ríos FJ, Tassinari CCG, Recio C (2011) Pingüino In-bearing polymetallic vein deposit, Deseado Massif, Patagonia, Argentina: characteristics of mineralization and ore-forming fluids. Mineral Deposits 46:257–271CrossRefGoogle Scholar
  56. Lesta PJ, Ferello R (1972) Región extrandina de Chubut y Norte de Santa Cruz. In: Leanza AF (ed) Geología regional Argentina. Academia Nacional de Ciencias, Córdoba, pp 601–653Google Scholar
  57. Lopez RG (2006) Estudio Geológico-Metalogenético del área oriental al curso medio del Río Pinturas, sector noroeste del Macizo del Deseado, provincia de Santa Cruz, Argentina. Ph.D. thesis, University of La Plata. p. 206Google Scholar
  58. Lopez RG, Gómez JC, de Barrio RE, Schalamuk IB (2002) Lineaments analysis in epithermal deposits exploration, Southern Argentina. AIG J 114–117Google Scholar
  59. Ludwig KY (2001). Isoplot/Ex, rev. 2.49, a geochronological toolkit for microsoft excel, Berkeley Geochronlogy Center Special Publication, 1a, 56 pGoogle Scholar
  60. Marshall B, Gilligan L (1987) An introduction to remobilization: information from ore-body geometry and experimental considerations. Ore Geol Rev 2:87–131CrossRefGoogle Scholar
  61. Matsuhisa Y, Aoki M (1994) Temperature and oxygen isotope variations during formation of the Hishikari Epithermal gold-silver veins, southern Kyushu, Japan. Econ Geol 89:1608–1613CrossRefGoogle Scholar
  62. Moncada D, Bodnar RJ (2012) Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita vein in the Guanajuato mining district, Mexico. Cent Eur J Geosci 4:300–309Google Scholar
  63. Moncada D, Mutchler S, Nieto A, Reynolds TJ, Rimstidt JD, Bodnar RJ (2012) Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: application to exploration. J Geochem Explor 114:20–35CrossRefGoogle Scholar
  64. Moreira P (2005) Geología y metalogénesis del distrito La Josefina, macizo del Deseado, provincia de Santa Cruz PhD thesis, Universidad Nacional de La Plata, La Plata, Argentina, 360 pp. Available at: http://sedici.unlp.edu.ar/handle/10915/4478
  65. Morgan L (2009) Hydrothermal processes above the Yellowstone magma chamber: large hydrothermal systems and large hydrothermal explosions. Geol Soc Am Special Paper 459Google Scholar
  66. Mutchler SR, Fedele L, Bodnar RJ (2008) Analysis Management System (AMS) for reduction of laser ablation ICPMS data. In: Sylvester P (ed) Laser-ablation-ICPMS in the earth sciences: current practices and outstanding issues. Mineral Association of Canada. Short Course Series 40: 318–327Google Scholar
  67. Nelson CE, Giles DL (1985) Hydrothermal eruption mechanisms and hot spring gold deposits. Econ Geol 80:1633–1639CrossRefGoogle Scholar
  68. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  69. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567Google Scholar
  70. Páez G, Ruiz R, Guido DM, Ríos FJ, Subias I, Recio C, Schalamuk I (2016) High-grade ore shoots at the Martha epithermal vein system, Deseado Massif, Argentina: the interplay of tectonic, hydrothermal and supergene processes in ore genesis. Ore Geol Rev 72:546–561CrossRefGoogle Scholar
  71. Pankhurst R, Leat P, Sruoga P, Rapela C, Marquez M, Storey B, Riley T (1998) The Chon Aike province of Patagonia and related rocks in West Antartica: a silicic large igneous province. J Volcanol Geotherm Res 81:113–136CrossRefGoogle Scholar
  72. Pankhurst R, Riley T, Fanning C, Kelley S (2000) Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the Break-up of Gondwana. J Petrol 41:605–625CrossRefGoogle Scholar
  73. Panza JL, Haller MJ (2002) El volcanismo jurásico. In: Haller MJ (ed) Geología y recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino. pp. 89–102Google Scholar
  74. Passchier C, Trouw WY (2005) Microtectonics. Springer.371 pGoogle Scholar
  75. Permuy Vidal C, Zalazar M, Guido DM, Brown G (2013) Evolution of the post-mineralization Marianas hydrothermal eruption breccia, Cerro Negro District, Patagonia, Argentina. In 35th New Zealand Geothermal Workshop: 2013 Proceedings, Rotorua, New Zealand. 6 pGoogle Scholar
  76. Permuy Vidal C, Moreira P, Guido DM, Fanning C (2014) Linkages between the southern Patagonia Pre-Permian basements: new insights from detrital zircons U-Pb SHRIMP ages from the Cerro Negro District. Geol Acta 12(2):137–150Google Scholar
  77. Ramos V (2002) Evolución tectónica. In: M. Haller (ed) Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino. El Calafate, I-23:235–387Google Scholar
  78. Richardson N, Underhill JR (2002) Controls on the structural architecture and sedimentary character of syn-rift sequences, North Falkland Basin, South Atlantic. Mar Pet Geol 19:417–443CrossRefGoogle Scholar
  79. Riley TR, Leat PT, Pankhurst RJ, Harris C (2001) Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. J Petrol 42:1043–1065CrossRefGoogle Scholar
  80. Roedder E (1984) Fluid inclusions. Rev in Mineral 12:644 pGoogle Scholar
  81. Ruiz R (2012) Geología y Mineralizaciones del sector sudoccidental del Macizo del Deseado, Santa Cruz PhD thesis, Universidad Nacional de La Plata, La Plata, Argentina. 314 pp. Available at http://sedici.unlp.edu.ar/handle/10915/25786
  82. Sander MV, Black JE (1988) Crystallization and recrystallization of growth-zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies. Econ Geol 83(5):1052–1060CrossRefGoogle Scholar
  83. Sawkins FJ, O’Neil JR, Thompson JM (1979) Fluid inclusion and geochemical studies of vein gold deposits, Baguio district, Philippines. Econ Geol 74:1420–1434CrossRefGoogle Scholar
  84. Schalamuk IB, Zubia M, Genini A, Fernández R (1997) Jurassic epithermal Au-Ag deposits of Patagonia, Argentina. Ore Geol Rev 12(3):173–186CrossRefGoogle Scholar
  85. Schalamuk IB, de Barrio R, Zubia M, Genini A, Echeveste H (1999) Provincia Auroargentífera del Deseado, Santa Cruz. Recursos Minerales de la República Argentina In: Zappettini E (ed) Instituto de Geología y Recursos Minerales SEGEMAR, Anales, 35: 177–1188Google Scholar
  86. Schalamuk IB, de Barrio RE, Zubia MA, Genini A (2002) Mineralizaciones auro-argentíferas del Macizo del Deseado y su enfoque metalogénico. In: Haller MJ (Ed) Geología y Recursos Naturales de Santa Cruz, Relatorio del XV Congreso Geológico Argentino, pp. 679–713 (Buenos Aires)Google Scholar
  87. Schoen R, White DE, Hemley JJ (1974) Argillization by descending acid at the Steamboat Springs, Nevada. Clay Clay Miner 22:1–22CrossRefGoogle Scholar
  88. Sharpe R, Riveros C, Scavuzzo V (2002) Stratigraphy of the Chon Aike formation ignimbrite sequence in the Cerro Vanguardia Au-Ag epithermal vein district. XV Congreso Geológico Argentino ActasGoogle Scholar
  89. Shatwell D, Clifford JA, Echavarría D, Irusta G, Lopez D (2011) Discoveries of low-sulfidation epithermal Au–Ag veins at Cerro Negro, Deseado Massif, Argentina. SEG Newsl 85:16–23Google Scholar
  90. Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Miner 31:1–24CrossRefGoogle Scholar
  91. Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (Eds) (2015) The encyclopedia of volcanoes, 2nd edn. Elsevier, 1456 pGoogle Scholar
  92. Sillitoe EH (1994) Erosion and collapse of volcanoes: causes of telescoping in intrusion-centered ore deposits. Geology 22:945–948CrossRefGoogle Scholar
  93. Sillitoe EH (2015) Epithermal paleosurfaces. Mineral Deposita 50:767–793CrossRefGoogle Scholar
  94. Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. SEG Spec Pub 10:315–343Google Scholar
  95. Simmons S, Browne PR (2000) Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Econ Geol 95:971–999Google Scholar
  96. Simmons SF, Christenson BW (1994) Origins of calcite in a boiling geothermal system. Am J Sci 294:361–400CrossRefGoogle Scholar
  97. Simmons SF, Arehart G, Simpson MP, Mauk JL (2000) Origin of massive calcite veins in the golden cross low-sulfidation, epithermal Au-Ag deposit, New Zealand. Econ Geol 95:99–112CrossRefGoogle Scholar
  98. Simmons S, White N, John D (2005) Geological characteristics of epithermal precious and base metal deposits. SEG 100th anniversary volume, pp 485–522Google Scholar
  99. Simpson MP, Mauk JL (2011) Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand. Econ Geol 106:945–973CrossRefGoogle Scholar
  100. Simpson MP, Palinkas SS, Mauk JL, Bodnar RJ (2015) Fluid inclusion chemistry of Adularia-Sericite epithermal Au-Ag deposits of the Southern Hauraki Goldfield, New Zealand. Econ Geol 110:763–786CrossRefGoogle Scholar
  101. Taylor BE (1986) Magmatic volatiles: isotopic variations of C, H, and S. Rev Mineral 16:185–225Google Scholar
  102. Ueda A, Roy Cruise H (1986) Direct conversion of sulphide and sulphate minerals to SO2 for isotope analysis. Geochem J 20:209–212CrossRefGoogle Scholar
  103. Vaughan DJ, Craig JR (1997) Sulfide ore mineral stability, morphologies, and intergowth textures. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, p. 367–434Google Scholar
  104. Wallier S (2009) The geology and evolution of the Manantial Espejo epithermal silver (+gold) deposit, Deseado Massif, Argentina. Unpublished PhD Thesis. University of British Columbia, Vancouver, Canada. 303 pp. Available at http://circle.ubc.ca/ handle/2429/17439
  105. Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Conrado Permuy Vidal
    • 1
  • Diego M. Guido
    • 1
  • Sebastián M. Jovic
    • 1
  • Robert J. Bodnar
    • 2
  • Daniel Moncada
    • 3
  • Joan Carles Melgarejo
    • 4
  • Willis Hames
    • 5
  1. 1.CONICET and Facultad de Ciencias Naturales y Museo, Instituto de Recursos Minerales (INREMI)Universidad Nacional de La PlataLa PlataArgentina
  2. 2.Department of GeosciencesVirginia TechBlacksburgUSA
  3. 3.Department of Geology and Andean Geothermal Center of Excellence (CEGA)Universidad de ChileSantiagoChile
  4. 4.Departament de Cristalografia, Mineralogia i Dipòsits Minerals, Facultat de GeologiaUniversitat de BarcelonaBarcelonaSpain
  5. 5.Department of GeosciencesAuburn UniversityAuburnUSA

Personalised recommendations