Mineralium Deposita

, Volume 50, Issue 8, pp 1007–1029 | Cite as

Platinum-group minerals in the Limoeiro Ni–Cu–(PGE) sulfide deposit, Brazil: the effect of magmatic and upper amphibolite to granulite metamorphic processes on PGM formation

  • J. Mota-e-SilvaEmail author
  • H. M. Prichard
  • C. F. Ferreira Filho
  • P. C. Fisher
  • I. McDonald


The Limoeiro Ni–Cu–(platinum-group elements (PGE)) deposit is a recent discovery associated with an igneous tubular conduit system in northeastern Brazil. Representative ores from the deposit have been used for platinum-group minerals (PGM) identification and for PGE in base metal sulfides (BMS) quantification. Ninety-eighty percent of the PGM in the massive sulfide ores is homogeneous Pt–Ni–Bi-bearing merenskyite (PdTe2) enclosed primarily by pyrrhotite, suggesting that it is formed by exsolution from monosulfide solid solution (MSS). Merenskyite gradually but systematically becomes poorer in Pt and Ni with increasing fractionation, which is interpreted to reflect a transition to a more evolved sulfide liquid that segregated in the eastern parts of the intrusion. In massive sulfide ores, merenskyite forms unusually large (up to 5000 μm2) euhedral grains, commonly in contact with spherical silicate inclusions. BMS hosts 12–16 % of the Pd, with the remainder hosted by PGM, which is interpreted to indicate that merenskyite recrystallized from a PGE-bearing bismuthotelluride metamorphic melt formed during high-grade metamorphism. Sperrylite (PtAs2) is the second most abundant PGM (18 % of PGM in disseminated ore) and in contrast to merenskyite occurs mainly as very small (median of 25 μm2) inclusions in high-temperature silicates and oxides, interpreted to have crystallized at high temperatures directly from sulfide blebs that formed and were transported within the Limoeiro magma conduit.


Platinum-group-minerals Merenskyite Upper amphibolite to granulite facies metamorphism Sperrylite Ni–Cu–PGE sulfide deposit Platinum-group elements 



We would like to thank the technical support from the Limoeiro Project team (headed by Rafael Freitas) for their assistance and cooperation. We are grateful to Jones Belther (Votorantim Metals’ Minerals Exploration Division director) for permission to sample the Limoeiro deposit and publish the results. We are immensely glad with the very detailed corrections and suggestion of improvement carried out by the Associate Editor Mike Lesher, Editor-in-Chief Georges Beaudoin, Reviewer Belinda Godel, and an Anonymous Reviewer. This paper is part of first author’s PhD thesis (Geosciences Institute, University of Brasilia), which was partly funded by CAPES Foundation, Ministry of Education of Brazil, fellowship (process BEX 3603/13-0).

Ethical Responsibilities of Authors

This study was funded by CAPES Foundation, Ministry of Education of Brazil, fellowship (process BEX 3603/13-0). The authors declare that they have no conflict of interest.

Supplementary material

126_2015_585_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)


  1. Almeida FFM, Hasui Y, Brito Neves BB, Fuck RA (1981) Brazilian structural provinces: an introduction. Earth Sci Rev 17:1–29CrossRefGoogle Scholar
  2. Ames DE, Farrow CEG (2007) Metallogeny of the Sudbury mining camp. Mineral Deposits Division, Geological Association of Canada, Ontario, pp 329–350, Spec Pub 5Google Scholar
  3. Ames DE, Davidson A, Wodicka N (2008) Geology of the giant Sudburypolymetallic mining camp, Ontario, Canada. Econ Geol 103:1057−1077Google Scholar
  4. Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J Petrol 41:545–561CrossRefGoogle Scholar
  5. Barkov A, Laflamme G, Cabri LJ, Martin RF (2002) Platinum-group minerals from the Wellgreen Ni–Cu–PGE deposit, Yukon, Canada. Can Mineral 40:651–669CrossRefGoogle Scholar
  6. Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. Econ Geol 100:179–213CrossRefGoogle Scholar
  7. Barnes SJ, Liu W (2012) Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modelling. Ore Geol Rev 44:49–58Google Scholar
  8. Barnes S-J, Couture JF, Sawyer EW, Bouchaib C (1993) Nickel-copper occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the use of Cu-Pd ratios in interpreting platinum-group element distributions. Econ Geol 88(6):1402–1418CrossRefGoogle Scholar
  9. Barnes S-J, Prichard HM, Cox RA, Fisher PC, Godel B (2008) The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits. Chem Geol 248:295–317CrossRefGoogle Scholar
  10. Barnes S-J, Wells MA, Verrall MR (2009) Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Econ Geol 104(4):539–562CrossRefGoogle Scholar
  11. Beaty RD, Manuel OK (1973) Tellurium in rocks. Chem Geol 12(2):155–159CrossRefGoogle Scholar
  12. Brito Neves BB, Santos EJ, Van Schmus WR (2000) Tectonic history of the Borborema Province, Northeast Brazil. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America, 31st International Geological Congress, Rio de Janeiro, p 151–182Google Scholar
  13. Cabri LJ (2002) The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, Canadian Institute of Minning, Metallurgy and Petroleum, Spec Vol 54, pp 483–506Google Scholar
  14. Cabri LJ, Laflamme G (1976) The mineralogy of the platinum group elements from some copper–nickel deposits of the Sudbury area, Ontario. Econ Geol 71:1159–1195CrossRefGoogle Scholar
  15. Coghill BM, Wilson AH (1993) Platinum-group minerals in the Selukwe Subchamber, Great Dyke, Zimbabwe: implications for PGE collection mechanisms and post-formational redistribution. Min Mag 57(389):613–634CrossRefGoogle Scholar
  16. Craig JR (1983) Metamorphic features in Appalachian massive sulphides. Min Mag 47(345):515–525CrossRefGoogle Scholar
  17. Dare SA, Barnes SJ, Prichard HM, Fisher PC (2010a) The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group element sulfide deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides. Econ Geol 105(6):1071–1096CrossRefGoogle Scholar
  18. Dare SA, Barnes SJ, Prichard HM (2010b) The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Miner Deposita 45(8):765–793CrossRefGoogle Scholar
  19. Dillon-Leitch HCH, Watkinson DH, Coats CJA (1986) Distribution of platinum-group elements in the Donaldson West deposit, Cape Smith belt, Quebec. Econ Geol 81(5):1147–1158CrossRefGoogle Scholar
  20. Djon MLN, Barnes SJ (2012) Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada. Miner Deposita 47(8):875–896CrossRefGoogle Scholar
  21. Fiorentini ML, Bekker A, Rouxel O, Wing BA, Maier W, Rumble D (2012) Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from eastern Botswana. Econ Geol 107(1):105–116CrossRefGoogle Scholar
  22. Fuchs WA, Rose AW (1974) The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater Complex, Montana. Econ Geol 69(3):332–346CrossRefGoogle Scholar
  23. Gammons CH, Yu Y, Bloom MS (1993) Experimental investigation of the hydrothermal geochemistry of platinum and palladium: II. The solubility of PtS and PdS in aqueous sulfide solutions to 300 °C. Geochim Cosmochim Acta 57:2451–2467CrossRefGoogle Scholar
  24. Garuti G, Rinaldi R (1986) Mineralogy of melonitc-group and other tellurides from the Ivrea-Verbano Basic Complex, Western Italian Alps. Econ Geol 81:1213–1217CrossRefGoogle Scholar
  25. Godel B, Barnes S-J (2008) Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): implication for the formation of the reef. Chem Geol 248:272–294CrossRefGoogle Scholar
  26. Godel B, González-Álvarez I, Barnes SJ, Barnes SJ, Parker P, Day J (2012) Sulfides and sulfarsenides from the rosie nickel prospect, Duketon Greenstone Belt, Western Australia. Econ Geol 107(2):275–294CrossRefGoogle Scholar
  27. Hanley JJ (2007) The role of arsenic-rich melts and mineral phases in the development of high-grade Pt-Pd mineralization within komatiite-associated magmatic Ni-Cu sulfide horizons at Dundonald Beach South, Abitibi Subprovince, Ontario, Canada. Econ Geol 102(2):305–317CrossRefGoogle Scholar
  28. Harney DMW, Merkle RKW (1990) Pt-Pd minerals from the upper zone of the Eastern Busheveld Complex, South Africa. Can Mineral 28:619–628Google Scholar
  29. Hattori KH, Arai S, Clarke DB (2002) Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides. Can Mineral 40(2):637–650CrossRefGoogle Scholar
  30. Helmy HM, Ballhaus C, Berndt J, Bockrath C, Wohlgemuth-Ueberwasser C (2007) Formation of Pt, Pd and Ni tellurides: experiments in sulfide–telluride systems. Contrib Mineral Petrol 153(5):577–591CrossRefGoogle Scholar
  31. Helmy HM, Ballhaus C, Wohlgemuth-Ueberwasser C, Fonseca RO, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt—application to magmatic sulfide deposits. Geochim Cosmochim Acta 74(21):6174–6179CrossRefGoogle Scholar
  32. Helmy HM, Ballhaus C, Fonseca RO, Wirth R, Nagel T, Tredoux M (2013) Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nat Commun 4:2405CrossRefGoogle Scholar
  33. Hoffman EL, MacLean WH (1976) Phase relations of michenerite and merenskyite in the Pd-Bi-Te system. Econ Geol 71(7):1461–1468CrossRefGoogle Scholar
  34. Holwell DA, McDonald I (2010) A review of the behaviour of platinum group elements within natural magmatic sulfide ore systems. Platin Met Rev 54(1):26–36CrossRefGoogle Scholar
  35. Hudson DR (1986) Platinum-group minerals from the Kambalda nickel deposits, Western Australia. Econ Geol 81:1218–1225CrossRefGoogle Scholar
  36. Hutchinson D, McDonald I (2008) Laser ablation ICP-MS study of platinum-group elements in sulfides from the Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa. Miner Deposita 43(6):695–711CrossRefGoogle Scholar
  37. Kerr A (2001) The calculation and use of sulfide metal contents in the study of magmatic ore deposits: a methodological analysis. Explor Min Geol 10(4):289–301CrossRefGoogle Scholar
  38. Knight RD, Prichard HM, McDonald I, Ferreira CFF (2011) Platinum-group mineralogy of the Fazenda Mirabela intrusion, Brazil: the role of high temperature liquids and sulfur loss. Trans Inst Min Metall B 120(4):211–224Google Scholar
  39. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  40. Lesher CM, Groves DI (1986) Controls on the formation of komatiite-associated nickel-copper sulfide deposits. In: Geology and metallogeny of copper deposits. Springer, Berlin, pp 43–62CrossRefGoogle Scholar
  41. Lesher CM, Burnham OM, Keays RR, Barnes SJ, Hulbert L (2001) Trace-element geochemistry and petrogenesis of barren and ore-associated komatiites. Can Mineral 39(2):673–696CrossRefGoogle Scholar
  42. Li C, Naldrett AJ, Coats CJA, Johannessen P (1992) Platinum, palladium, gold, copper-rich stringers at the Strathcona Mine, Sudbury; their enrichment by fractionation of a sulfide liquid. Econ Geol 87(6):1584–1598CrossRefGoogle Scholar
  43. Li C, Barnes SJ, Makovicky E, Rose-Hansen J, Makovicky M (1996) Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: effects of composition and temperature. Geochim Cosmochim Acta 60(7):1231–1238CrossRefGoogle Scholar
  44. Li C, Xu Z, de Waal SA, Ripley EM, Maier WD (2004) Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis. Miner Deposita 39:159–172CrossRefGoogle Scholar
  45. Lightfoot PC, Farrow CEG (2002) Geology, geochemistry, and mineralogy of the Worthington offset dike: a genetic model for offset dike mineralization in the Sudbury Igneous Complex. Econ Geol 97:1419–1445Google Scholar
  46. Lightfoot PC, Naldrett AJ, Gorbachev NS, Doherty W, Fedorenko VA (1990) Geochemistry of the Siberian Trap of the Noril'sk with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib Mineral Petrol 104:631–644CrossRefGoogle Scholar
  47. Liu Y-N, Brenan J (2012) Experimental measurement of PGE and semi-metal partitioning during sulfide melt crystallization at controlled fO2-fS2 conditions. Chinese Academy of Sciences, 12th International Ni-Cu-(PGE) Symposium, China, Proceedings, pp 36–39Google Scholar
  48. Lorand JP, Alard O, Luguet A, Keays RR (2003) Sulfur and selenium systematics of the subcontinental lithospheric mantle: inferences from the Massif Central xenolith suite (France). Geochim Cosmochim Acta 67(21):4137–4151CrossRefGoogle Scholar
  49. Makovicky E, Karup-Moller S, Makovicky M, Rose-Hansen J (1990) Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral Petrol 42:307–319CrossRefGoogle Scholar
  50. McDonald I (2008) Platinum-group element and sulfide mineralogy in ultramafic complexes at western Andriamena, Madagascar. Trans Inst Min Metall B 117(1):1–10Google Scholar
  51. Medvedeva ZS, Klochko MA, Kuznetsov VG, Andreeva SN (1961) Structural diagram of the Pd-Te alloy system. Zh Neorg Khim 6:1737–1739Google Scholar
  52. Mota-e-Silva J, Ferreira Filho CF, Giustina MESD (2013) The Limoeiro deposit: Ni-Cu-PGE sulfide mineralization hosted within an Ultramafic tubular magma conduit in the Borborema Province, Northeastern Brazil. Econ Geol 108:1753–1771CrossRefGoogle Scholar
  53. Mukwakwami J, Lafrance B, Lesher CM (2012) Back-thrusting and overturning of the southern margin of the 1.85 Ga Sudbury Igneous Complex at the Garson mine, Sudbury, Ontario. Precambrian Res 196:81–105CrossRefGoogle Scholar
  54. Naldrett AJ (1981) Nickel sulphide deposits: classification, composition and genesis. Econ Geol 75:628–687Google Scholar
  55. Naldrett AJ (2004) Magmatic sulfide deposits—geology, geochemistry and exploration. Springer, BerlinCrossRefGoogle Scholar
  56. Naldrett T, Kinnaird J, Wilson A, Chunnett G (2008) Concentration of PGE in the Earth’s crust with special reference to the Bushveld Complex. Earth Sci Front 15(5):264–297CrossRefGoogle Scholar
  57. Neves SP, Alcantara VC (2010) Geochemistry of orthogneisses and metasedimentary rocks across a proposed terrane boundary in the Central Domain of Borborema Province, NE Brazil: geodynamic implications. J South Am Earth Sci 29(2):498–511CrossRefGoogle Scholar
  58. Pan P, Wood SA (1994) Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions; II, results at 200 degrees C to 350 degrees C and saturated vapor pressure. Miner Deposita 29:373–390CrossRefGoogle Scholar
  59. Piña R, Gervilla F, Barnes SJ, Ortega L, Lunar R (2013) Partition coefficients of platinum group and chalcophile elements between arsenide and sulfide phases as determined in the Beni Bousera Cr-Ni mineralization (North Morocco). Econ Geol 108(5):935–951CrossRefGoogle Scholar
  60. Power MR, Pirrie D, Jedwab J, Stanley CJ (2004) Platinum-group element mineralization in an As-rich magmatic sulfide system, Talnotry, southwest Scotland. Mineral Mag 68(2):395–411CrossRefGoogle Scholar
  61. Prichard HM, Sá JHS, Fisher PC (2001) Platinum-group mineral assemblages and chromite composition in the altered and deformed Bacuri complex, Amapa, Northeastern Brazil. Can Mineral 39:377–396CrossRefGoogle Scholar
  62. Prichard HM, Knight RD, Fisher PC, McDonald I, Zhou MF, Wang CY (2013) Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: an example of selenium remobilization by postmagmatic fluids. Miner Deposita 48:767–786. doi: 10.1007/s00126-013-0454-7 CrossRefGoogle Scholar
  63. Santoliquido PM, Ehmann WD (1972) Bismuth in stony meteorites and standard rocks. Geochim Cosmochim Acta 36(8):897–902CrossRefGoogle Scholar
  64. Santos EJ, Van Schmus WR, Kozuch M, Brito Neves BB (2010) The Cariris Velhos tectonic event in northeast Brazil. J South Am Earth Sci 29:61–76CrossRefGoogle Scholar
  65. Seabrook CL, Prichard HM, Fisher PC (2004) Platinum-group minerals in the Raglan Ni–Cu–(PGE) sulfide deposit, Cape Smith, Quebec, Canada. Can Mineral 42(2):485–497CrossRefGoogle Scholar
  66. Sinyakova EF, Kosyakov VI (2007) Experimental modeling of zoning in copper-nickel sulfide ores. Dokl Earth Sci 417A(9):1380–1385CrossRefGoogle Scholar
  67. Smith JW, Holwell DA, McDonald I (2011) The mineralogy and petrology of platinum-group element-bearing sulfide mineralization within the Grasvally Norite–Pyroxenite–Anorthosite (GNPA) member, south of Mokopane, northern Bushveld Complex, South Africa. Trans Inst Min Metall B 120:158–174Google Scholar
  68. Spear FS (1993) Metamorphic phase-equilibria and pressure—temperature—time paths. Mineral Society of America, Washington, D.CGoogle Scholar
  69. Tomkins AG, Pattison DR, Frost BR (2007) On the initiation of metamorphic sulfide anatexis. J Petrol 48(3):511–535Google Scholar
  70. Vokes FM (1969) A review of the metamorphism of sulphide deposits. Earth Sci Rev 5(2):99–143CrossRefGoogle Scholar
  71. Wang CY, Prichard HM, Zhou MF, Fisher PC (2008) Platinum-group minerals from the Jinbaoshan Pd–Pt deposit, SW China: evidence for magmatic origin and hydrothermal alteration. Miner Deposita 43(7):791–803CrossRefGoogle Scholar
  72. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185CrossRefGoogle Scholar
  73. Wilson AH, Murahwv CZ, Coghill B (2000) Stratigraphy, geochemistry and platinum group element mineralisation of the central zone of the Selukwe Subchamber of the Great Dyke, Zimbabwe. J Afr Earth Sci 30(4):633–653CrossRefGoogle Scholar
  74. Wood M (2003) Arsenic in igneous systems: an experimental investigation. BA Sc thesis, University of TorontoGoogle Scholar
  75. Wood SA, Mountain BW, Fenlon BJ (1989) Thermodynamic constraints on the solubility of platinum and palladium in hydrothermal solutions; reassessment of hydroxide, bisulfide, and ammonia complexing. Econ Geol 84:2020–2028CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Mota-e-Silva
    • 1
    • 2
    Email author
  • H. M. Prichard
    • 3
  • C. F. Ferreira Filho
    • 2
  • P. C. Fisher
    • 3
  • I. McDonald
    • 3
  1. 1.Votorantim MetalsJundiaíBrazil
  2. 2.Instituto de GeociênciasUniversidade de BrasiliaBrasíliaBrazil
  3. 3.School of Earth and Ocean ScienceCardiff UniversityCardiffUK

Personalised recommendations