Advertisement

Mineralium Deposita

, Volume 51, Issue 1, pp 89–111 | Cite as

Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep

  • Christian SchardtEmail author
Article

Abstract

Numerical heat and fluid flow simulations of the Atlantis II Deep in the Red Sea were conducted to investigate the development, migration, and discharge of hydrothermal fluids into a submarine depression and determine the conditions necessary to form a brine pool. High-salinity fluids are predicted to form by leaching Miocene evaporates, migrate and convect within young oceanic crust, and discharge onto the seafloor. Predicted fluid discharge temperatures (T max, 301 °C), discharge fluid velocities (V max, 0.09 m/s), and salinities (S max, 21 wt%) increase over time and reach values comparable to modern seafloor observations. Established convection patterns and discharge behavior are robust and are not greatly affected by geometry of rock property changes. Modeling results were used to calculate the minimum conditions for hydrothermal fluids from a developing hydrothermal system to mix with seawater, reverse buoyancy, and begin to form a brine pool in a submarine depression. Under conditions encountered on the seafloor (T, 25–300 °C; S, 5–25 wt%), fluid mixtures predicted to pond on the seafloor range from late in the mixing process (99 %) at low temperatures (T, 26 °C) to much earlier (36 % mixing) at higher temperatures (T, 94 °C). A model of brine pool evolution is proposed that describes the processes and conditions necessary to initiate brine pool formation and compares formation conditions with accumulated ore material in the Atlantis II Deep and other locations.

Keywords

Hydrothermal Brine Brine pool Buoyancy reversal Red Sea Atlantis II Deep 

Notes

Acknowledgments

I would like to thank the reviewers for their helpful suggestions, Ross Large and Bruce Gemmell for their discussions on the subject years ago, and remember Mike Solomon, who was the inspiration for my fascination with brine pools.

Compliance with Ethical Standards

Conflict of interest

The author declares that he has no conflict of interest.

No animals or human participants were involved in this research.

References

  1. Anschutz P, Blanc G (1995) Geochemical dynamics of the Atlantis II Deep (Red Sea): silica behavior. Mar Geol 128:25–36CrossRefGoogle Scholar
  2. Anschutz P, Blanc G (1996) Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth Planet Sci Lett 142:147–159CrossRefGoogle Scholar
  3. Anschutz P, Turner JS, Blanc G (1998) The development of layering, fluxes through double-diffusive interfaces, and location of hydrothermal sources of brines in the Atlantis II Deep: Red Sea. J Geophys Res 103:27809–27819CrossRefGoogle Scholar
  4. Anschutz P, Blanc G, Chatin F, Geiller M, Pierret MC (1999) Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res I 46:1779–1792CrossRefGoogle Scholar
  5. Bäcker H (1973) Rezente hydrothermal-sedimentäre Lagerstättenbildung. Erzmetall 26:544–555Google Scholar
  6. Bäcker H, Richter H (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis-II-Tief im Roten Meer. Geol Rundsch 52:697–737CrossRefGoogle Scholar
  7. Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nature Phys Sci 240:153–158CrossRefGoogle Scholar
  8. Baker ET, Massoth GJ (1987) Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet Sci Lett 85:59–73CrossRefGoogle Scholar
  9. Bear J (1988) Dynamics of fluids in porous media. Dover, New YorkGoogle Scholar
  10. Bertram C, Krätschell A, O’Brien K,Brückmann W, Proelss, Rehdanz K (2011) Metalliferous Sediments in the Atlantis II Deep – Assessing the Geological and Economic Resource Potential and Legal Constraints. Kiel Institute for the World Economy Paper 1688: 30 pGoogle Scholar
  11. Bignell RD, Cronan DS, Tooms JS (1976) Red Sea metalliferous brine precipitates. Geol Assoc Canada Spec Pap 14:150–179Google Scholar
  12. Bischoff JL (1969) Red Sea geothermal brine deposits: their mineralogy, chemistry, and genesis. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 368–401CrossRefGoogle Scholar
  13. Bischoff JL, Dickson FW (1975) Seawater-basalt interaction at 200°C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett 25:385–397CrossRefGoogle Scholar
  14. Blanc G, Anschutz P (1995) New stratification in the hydrothermal brine system of the Atlantis II Deep, Red Sea. Geologija 23:543–546CrossRefGoogle Scholar
  15. Blanc G, Boulègue J, Badaut D, Stouff P (1986) Premiers résultats de la campagne océanographique Hydrotherm (mai 1985) du Marion-Dufresne sur la fosse Atlantis II (Mer Rouge). Comptes Rendus Acad Sci Paris 302:175–180Google Scholar
  16. Blanc G, Anschutz P, Pierret MC (1998) Metalliferous sedimentation in the Atlantis II deep: a geochemical insight. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins. Red Sea—Gulf of Aden. Chapman and Hall, London, pp 505–520CrossRefGoogle Scholar
  17. Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban deeps, Red Sea. Miner Deposita 26:217–227CrossRefGoogle Scholar
  18. Bohannon RG (1986) Tectonic configuration of the western Arabian continental margin, southern Red Sea. Tectonics 5:477–499CrossRefGoogle Scholar
  19. Bonatti E, Colantoni R, Della Vedova BD, Taviani M (1984) Geology of the Red Sea transitional region (22°N–25°N). Oceanol Acta 7:385–398Google Scholar
  20. Boyce AJ, Coleman ML, Russell MJ (1983) Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature 306:545–550CrossRefGoogle Scholar
  21. Brewer PG, Densmore CD, Munns R, Stanley RJ (1969) Hydrography of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 368–401Google Scholar
  22. Bubnov VA, Fedorova VS, Shcherbinin AD (1977) Density data on brines in the Red Sea. Oceanology 17:395–400Google Scholar
  23. Campbell IH, McDougall TJ, Turner JS (1984) A note on fluid dynamic processes which can influence the deposition of massive sulfides. Econ Geol 79:1905–1913CrossRefGoogle Scholar
  24. Carwile RH, Faure G (1971) Strontium isotope ratios and base metal content in a core from the Atlantis II deep, Red Sea. Chem Geol 8:15–23CrossRefGoogle Scholar
  25. Cathles LM (1993) A capless 350°C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems. Econ Geol 88:1977–1988CrossRefGoogle Scholar
  26. Cathles LM (2011) What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits. Miner Deposita 46:639–657CrossRefGoogle Scholar
  27. Chou IM (1987) Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars. Geochim Cosmochim Acta 51:1965–1975CrossRefGoogle Scholar
  28. Clark SP (1966) Thermal conductivity. Geol Soc Am Mem 97:459–482CrossRefGoogle Scholar
  29. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals, rock physics and phase relations—a handbook of physical constants. AGU Ref Shelf 3:105–126CrossRefGoogle Scholar
  30. Cocherie A, Calvez JY, Oudin-Dunlop E (1994) Hydrothermal activity as recorded by Red Sea sediments: Sr-Nd isotopes and REE signatures. Mar Geol 118:291–302CrossRefGoogle Scholar
  31. Cochran JR (2005) Northern Red Sea: Nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst. doi: 10.1029/2004GC000826 Google Scholar
  32. Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53CrossRefGoogle Scholar
  33. Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69:159–175CrossRefGoogle Scholar
  34. Cowen JP, Massoth GJ, Feely RA (1990) Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep Sea Res 37:1619–1637CrossRefGoogle Scholar
  35. Craig H (1966) Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154:1544–1548CrossRefGoogle Scholar
  36. Danielsson LG, Dryssen D, Granéli A (1980) Chemical investigation, of the Atlantis II and discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065CrossRefGoogle Scholar
  37. Davis RE, Stakes DS, Wheat CG, Moyer CL (2009) Bacterial variability within an iron-silica-manganese-rich hydrothermal mound located off-axis at the cleft segment. Juan de Fuca Ridge Geomicrobiol J. doi: 10.1080/01490450902889080 Google Scholar
  38. Dekov VM, Scholten JC, Botz B, Garbe-Schönberg CD, Stoffers P (2007) Fe-Mn-(hydro) oxide-carbonate crusts from the Kebrit Deep, Red Sea: precipitation at the seawater/brine redoxcline. Mar Geol 236. doi:10.1016/j.margeo.2006.10.020Google Scholar
  39. Delevaux MH, Doe BR (1974) Preliminary report on uranium, thorium, and lead contents and lead isotopic composition in sediment samples from the Red Sea. Initial Rep Deep Sea Drill Proj 23:943–946Google Scholar
  40. Department of Energy (2003) Waste isolation pilot plant hazardous waste permit, Attachment L. WIPP groundwater detection monitoring program plan, 80 pGoogle Scholar
  41. Drake CL, Girdler RW (1964) A geophysical study of the Red Sea. Geophys J Royal Astron Soc 8:473–495CrossRefGoogle Scholar
  42. Dupré B, Blanc G, Boulègue J, Allègre CJ (1988) Metal mobilization at a spreading centre studied using lead isotopes. Nature 333:165–167CrossRefGoogle Scholar
  43. Dziak RP, Bohnenstiehl DR, Cowen JP, Baker ET, Rubin KH, Haxel JH, Fowler MJ (2007) Rapid dike emplacement leads to eruptions and hydrothermal plume release during seafloor spreading events. Geology 35:579–582CrossRefGoogle Scholar
  44. Elderfield H, Wheat CG, Mottl MJ, Monnin C, Spiro B (1999) Fluid and geochemical transport through oceanic crust: a transsect across the eastern flank of the Juan de Fuca Ridge. Earth Planet Sci Lett. doi: 10.1016/S0012-821X(99)00191-0 Google Scholar
  45. Erickson AJ, Simmons G (1969) Thermal measurements in the Red Sea hot brine pools. In: Degens EJ, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 114–121CrossRefGoogle Scholar
  46. Fisher AT (1998) Permeability within basaltic oceanic crust. Rev Geophys 36:143–182CrossRefGoogle Scholar
  47. Fisher AT, Becker K, Narasimhan TN (1994) Off-axis hydrothermal circulation: parametric tests of a refined model of processes at Deep Sea Drilling Project/Ocean Drilling Program site 504. J Geophys Res 99:3097–3121CrossRefGoogle Scholar
  48. Fouquet Y, Knott R, Cambon P, Fallick A, Rickard D, Desbruyeres D (1996) Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth Planet Sci Lett 144:147–162CrossRefGoogle Scholar
  49. Garrido CJ, Machetel PL (2000) Modeling the effect of deep off-axis hydrothermal circulation on the thermal structure and accretion of the oceanic crust at fast-spreading mid-ocean ridges. EOS Abstr 81:1345Google Scholar
  50. German CR, Thurnherr AH, Knoery J, Charlou JL, Jean-Baptiste P, Edmonds HN (2010) Heat, volume flow and chemical fluxes from submarine venting: a synthesis of results from the rainbow hydrothermal field, 36°N MAR. Deep Sea Res I. doi: 10.1016/j.dsr.2009.12.011 Google Scholar
  51. Girdler RW (1970) A review of Red Sea heat flow. Philos Trans Royal Soc London A 267:191–203CrossRefGoogle Scholar
  52. Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J Royal Astron Soc 51:245–251CrossRefGoogle Scholar
  53. Girdler RW, Southren TC (1987) Structure and evolution of the northern Red Sea. Nature 330:716–721CrossRefGoogle Scholar
  54. Girdler RW, Whitmarsh RB (1974) Miocene evaporites in Red Sea cores, their relevance to the problem of the width and age of oceanic crust beneath the Red Sea. Initial Rep Deep Sea Drill Progr 23:913–921Google Scholar
  55. Guennoc P, Pautot G, Coutelle A (1988) Surficial structures of the northern Red Sea axial valley from 23°N to 28°N: time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23CrossRefGoogle Scholar
  56. Guney M, Nawab Z, Marhoun MA (1988) Atlantis II Deep’s metal reserves and their evaluation. Offshore Technol Conf Houston 3:33Google Scholar
  57. Hackett JP, Bischoff JL (1973) New data on the stratigraphy, extent, and geologic history of the Red Sea geothermal deposits. Econ Geol 68:553–564CrossRefGoogle Scholar
  58. Hadley DG, Schmidt DL (1980) Sedimentary rocks and basins of the Arabian shield and their evolution. Instit Appl Geol Bull 3:25–50Google Scholar
  59. Haenel R (1972) Heat flow measurements in the Red Sea and the Gulf of Aden. Z Geophys 38:1035–1047Google Scholar
  60. Hartmann M (1980) Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1966. Deep Sea Res 27A:161–171CrossRefGoogle Scholar
  61. Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery deep. Mar Geol 144:311–330CrossRefGoogle Scholar
  62. Hsü KJ, Stoffers P, Ross DA (1978) Messinian evaporites from the Mediterranean and Red Seas. Mar Geol 26:71–72CrossRefGoogle Scholar
  63. Huenges E, Hurter S, Sadaat A, Köhler S, Trautwein U (2002) The in-situ geothermal laboratory Groß-Schönebeck - learning to use low permeability aquifers for geothermal power. 27th Workshop Geotherm Reserv Eng, SGP-TR-171Google Scholar
  64. Hunt JM, Hays EE, Degens ET, Ross DA (1967) Red Sea: detailed survey of hot brine area. Science 156:514–516CrossRefGoogle Scholar
  65. Huyakorn PS, Pinder GF (1983) Computational methods in subsurface flow. Academic, WalthamGoogle Scholar
  66. Inverno CMC, Solomon M, Barton MD, Foden J (2008) The Cu stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: a mineralogical, fluid inclusion, and isotopic investigation. Econ Geol 103:241–267CrossRefGoogle Scholar
  67. Izzeldin AY (1987) Seismic, gravity and magnetic surveys in the central part of the Red Sea: their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics 143:269–306CrossRefGoogle Scholar
  68. Katsube TJ, Connell S (1998) Shale permeability characteristics. Geol Surv Can Rep 1998-E:183–192Google Scholar
  69. Katsube TJ, Wires K, Cameron BI, Franklin JM (1991) Porosity and permeability of ocean floor sediments from the Middle Valley Zone in the northeast Pacific: Borehole PAR90-1. Geol Surv Can Pap 91-1E:91–97Google Scholar
  70. Kelley DF (2006) Pressures of crystallization and depths of magma chambers in Iceland rift zones. Geol Soc Am Abst 38:447Google Scholar
  71. Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, AT3–60 Shipboard party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149CrossRefGoogle Scholar
  72. Kelley DS, Jeffrey A, Karson JA, Früh-Green GL (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434CrossRefGoogle Scholar
  73. Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and models. Econ Geol 87:471–510CrossRefGoogle Scholar
  74. Lavelle JW (1995) The initial rise of a hydrothermal plume from a line segment source—results from a three-dimensional numerical model. Geophys Res Lett 22:159–162CrossRefGoogle Scholar
  75. Lavelle JW (1997) Buoyancy-driven plumes in rotating, stratified cross-flows: plume dependence on rotation, turbulent mixing, and cross-flow strength. J Geophys Res 102:3405–3420CrossRefGoogle Scholar
  76. Lavelle JW, Baker ET (1994) A numerical study of local convection in the benthic ocean induced by episodic hydrothermal discharge. J Geophys Res 99:16065–16080CrossRefGoogle Scholar
  77. Leach D (2005) Sediment-hosted lead-zinc deposits; a global perspective. Econ Geol Ann 100:561–607Google Scholar
  78. Little SA, Stolzenbach KD, Von Herzen RP (1987) Measurements of plume flow from a hydrothermal vent field. J Geophys Res 92:2587–2596CrossRefGoogle Scholar
  79. Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet Sci Lett 73:211–225CrossRefGoogle Scholar
  80. Lowell JD, Genik GJ (1974) Sea-floor spreading and structural evolution of southern Red Sea. Am Assoc Petrol Geol Bull 56:247–259Google Scholar
  81. Lowell JD, Rona PA (2002) Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophys Res Lett 29:26-1–26-4CrossRefGoogle Scholar
  82. Lupton JE, Weiss RF, Craig H (1977) Mantle helium in the Red Sea brines. Nature 266:244–246CrossRefGoogle Scholar
  83. Lydon JW (2004) Genetic models for Sullivan and other SEDEX deposits. In: Deb M, Goodfellow WD (eds) Sediment-hosted lead-zinc sulphide deposits; attributes and models of some major deposits in India, Australia and Canada. Narosa, New Delhi, pp 149–190Google Scholar
  84. MacDonald KC, Becker K, Spiess FN, Ballard RD (1980) Hydrothermal heat flux of the ‘black smoker’ vent on the East Pacific Rise. Earth Planet Sci Lett 48:1–7CrossRefGoogle Scholar
  85. Makris J, Rihm R (1991) Shear-controlled evolution of the Red Sea: pull apart model. Tectonophysics 198:441–446CrossRefGoogle Scholar
  86. Martinez F, Cochran JR (1988) Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics 150:1–32CrossRefGoogle Scholar
  87. McDougall TJ (1984a) Convective processes caused by a dense, hot saline source flowing into a submarine depression from above. Deep Sea Res 31:1287–1309CrossRefGoogle Scholar
  88. McDougall TJ (1984b) Fluid dynamic implications for massive sulphide deposits of hot saline fluid flowing into a submarine depression from below. Deep Sea Res 31:145–170CrossRefGoogle Scholar
  89. McDougall TJ (1990) Bulk properties of “hot smoker” plumes. Earth Planet Sci Lett 99:185–194CrossRefGoogle Scholar
  90. McKibben MA, Andes JP Jr, Williams AE (1988) Active ore formation at a brine interface in metamorphosed deltaic lacustrine sediments: the Salton Sea geothermal system, California. Econ Geol 83:511–523CrossRefGoogle Scholar
  91. Melchert B, Devey CW, German CR, Lackschewitz KS, Seifert R, Walter M, Mertens C, Yoerger DR (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275:61–69CrossRefGoogle Scholar
  92. Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, McFarlin PF, Pocklington R, Jokela A (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 30:341–359CrossRefGoogle Scholar
  93. Missack E, Stoffers P, El Goresy A (1989) Mineralogy, paragenesis, and phase relations of copper-iron sulfides in the Atlantis II deep, Red Sea. Miner Deposita 24:82–91CrossRefGoogle Scholar
  94. Monin AS, Plakhin EA (1982) Stratification and space-time variability of Red Sea hot brines. Deep Sea Res 29:1271–1291CrossRefGoogle Scholar
  95. Morin R, Silva AJ (1984) The effects of high pressure and high temperature on some physical properties of ocean sediments. J Geophys Res 89:511–526CrossRefGoogle Scholar
  96. Morrow CA, Byerlee JD (1992) Permeability of core samples from Cajon Pass scientific drill hole: results from 2100 to 3500 m depth. J Geophys Res 97:5145–5151CrossRefGoogle Scholar
  97. Munns RG, Stanley RJ, Densmore CD (1967) Hydrographic observations of the Red Sea brines. Nature 214:1215–1217CrossRefGoogle Scholar
  98. Mustafa Z, Narwab Z, Horn R, Lelann F (1984) Economic interest of hydrothermal deposits. Proc Second International GERMINAL Seminar, Brest, 509–539Google Scholar
  99. Norden B, Förster A (2006) Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. Am Assoc Pet Geol Bull 90:939–962Google Scholar
  100. Norton D, Knapp R (1977) Transport phenomena in hydrothermal systems: the nature of porosity. Am J Sci 277:913–936CrossRefGoogle Scholar
  101. Oudin E, Thisse Y, Ramboz C (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea metalliferous sediment: preliminary results. Mar Min 5:3–31Google Scholar
  102. Oxburgh ER, Agrell SO (1982) Thermal conductivity and temperature structure of the Reydarfjordur borehole. J Geophys Res 87:6423–6428CrossRefGoogle Scholar
  103. Pezard PA (1990) Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust in hole 504B. J Geophys Res 95:9237–9264CrossRefGoogle Scholar
  104. Pierret MC, Blanc G, Bosch D (1998) Sr, Pb isotopes and REE analysis of five cores from the Red Sea: an insight into hydrothermal input. Mineral Mag 62A:1176–1177CrossRefGoogle Scholar
  105. Pierret MC, Clauer N, Bosch D, Blanc G, France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines. Geochim Cosmochimica Acta 65:1259–1275CrossRefGoogle Scholar
  106. Popp T, Kern H (1998) Ultrasonic wave velocities, gas permeability and porosity in natural and granular rock salt. Phys Chem Earth 23:373–378CrossRefGoogle Scholar
  107. Pottdorf RJ, Barnes HL (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ Geol Monogr 5:198–223Google Scholar
  108. Potter RW, Brown DL (1977) The volumetric properties of aqueous sodium chloride solutions from 0° to 500°C at pressures up to 2000 bars based on a regression of available data in the literature. Geol Surv Bull 1421-C: 36 ppGoogle Scholar
  109. Raffensperger JP (1993) Quantitative evaluation of the hydrologic and geochemical processes involved in the formation of unconformity- type uranium deposits: Dissertation, Johns Hopkins UniversityGoogle Scholar
  110. Raffensperger JP, Garven G (1995a) The formation of unconformity-type uranium ore deposits. 1. Coupled groundwater flow and heat transport modeling. Am J Sci 295:581–630CrossRefGoogle Scholar
  111. Raffensperger JP, Garven G (1995b) The formation of unconformity type uranium ore deposits. 2. Coupled hydrochemical modeling. Am J Sci 295:639–696CrossRefGoogle Scholar
  112. Ramboz C, Danis M (1990) Superheating in the Red Sea? The heat-mass balance of the Atlantis II Deep revisited. Earth Planet Sci Lett 97:190–210CrossRefGoogle Scholar
  113. Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II deep, Red Sea: evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Miner 26:765–786Google Scholar
  114. Rihm R, Makris J, Möller L (1991) Seismic surveys in the northern Red Sea: asymmetric crustal structure. Tectonophysics 198:279–295CrossRefGoogle Scholar
  115. Rona P, Trivett A (1992) Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge. Earth Planet Sci Lett 109:57–71CrossRefGoogle Scholar
  116. Rona PA, Thompson G, Mottl MJ, Karson JA, Jenkins WJ, Graham D, Mallette M, Von Damm K, Edmond JM (1984) Hydrothermal activity at the trans-Atlantic geotraverse hydrothermal field, mid-Atlantic ridge crest at 26°N. J Geophys Res 89:11365–11377CrossRefGoogle Scholar
  117. Ross DA (1972) Red Sea hot brine area: revisited. Science 175:1455–1457CrossRefGoogle Scholar
  118. Ross DA, Schlee J (1973) Shallow structure and geological development of the southern Red Sea. Geol Soc Am Bull 84:3827–3848CrossRefGoogle Scholar
  119. Ross DA, Hays EE, Allstrom FC (1969) Bathymetry and continuous seismic profiles of the hot brine region of the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 82–97CrossRefGoogle Scholar
  120. Sangster DF (2002) The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Miner Deposita 37:149–157CrossRefGoogle Scholar
  121. Sato T (1972) Behavior of ore-forming solutions in seawater. Min Geol 22:129–222Google Scholar
  122. Savoyat E, Shiferaw A, Balcha T (1989) Petroleum exploration in the Ethiopian Red Sea. J Pet Geol 12:187–204CrossRefGoogle Scholar
  123. Schardt C, Yang J, Large RR (2005) Numerical heat and fluid-flow modeling of the Panorama volcanic-hosted massive sulfide district, Western Australia. Econ Geol 100:574–566CrossRefGoogle Scholar
  124. Schardt C, Large RR, Yang J (2006) Controls on heat flow, fluid migration, and massive sulfide formation of an off-axis hydrothermal system—the Lau basin perspective. Am J Sci 306:103–134CrossRefGoogle Scholar
  125. Schoell M, Faber E (1978) New isotopic evidence of the origin of the Red Sea brines. Nature 275:436–438CrossRefGoogle Scholar
  126. Schoell M, Hartmann H (1978) Changing hydrothermal activity in the Atlantis II Deep geothermal system. Nature 274:784–785CrossRefGoogle Scholar
  127. Schoell M, Stahl W (1972) The carbon isotopic composition and the concentration of the dissolved anorganic carbon in the Atlantis II deep brines/Red Sea. Earth Planet Sci Lett 15:206–211CrossRefGoogle Scholar
  128. Scholten JC, Stoffers P, Garbe-Schönberg D, Moammar M (2000) Hydrothermal mineralization in the Red Sea. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC, Boca Raton, pp 369–395Google Scholar
  129. Scott SD (1985) Seafloor polymetallic sulfide deposits: modern and ancient. Mar Min 5:191–212Google Scholar
  130. Shanks WC III, Bischoff JL (1977) Ore transport and deposition in the Red Sea geothermal systems: a geochemical model. Geochim Cosmochim Acta 41:1507–1519CrossRefGoogle Scholar
  131. Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition, and accumulation rates of Red Sea geothermal deposits. Econ Geol 75:445–459CrossRefGoogle Scholar
  132. Snelgrove SH, Forster CB (1996) Impact of seafloor sediment permeability and thickness on off-axis hydrothermal circulation: Juan de Fuca Ridge eastern flank. J Geophys Res 101:2915–2925CrossRefGoogle Scholar
  133. Solomon M (2008) Brine-pool deposition for the Zn-Pb-Cu massive sulphide deposits of the Bathurst mining camp, New Brunswick, Canada. II. Ocean anoxia during mineralization. Ore Geol Rev 33:352–360CrossRefGoogle Scholar
  134. Solomon M, Gaspar OC (2001) Textures of the Hellyer volcanogenic massive sulphide deposit, Tasmania—the ageing of a sulphide sediment on the seafloor. Econ Geol 96:1513–1534Google Scholar
  135. Solomon M, Zaw K (1997) Formation of the Hellyer volcanogenic massive sulphide deposit on the seafloor. Econ Geol 92:686–695CrossRefGoogle Scholar
  136. Solomon M, Quesada C (2003) Zn-Pb-Cu massive sulphide deposits: brine pool types occur in collisional orogens, black smoker types in backarc/arc basins. Geologija 31:1029–1032CrossRefGoogle Scholar
  137. Solomon M, Tornos F, Large RR, Badham JNP, Both RA, Kin Z (2004) Zn-Pb-Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition. Ore Geol Rev 25:259–283CrossRefGoogle Scholar
  138. Stoffers P, Kühn R (1974) Red Sea evaporites: a petrographic and geochemical study. In: Whitmarsh RB, Weser OE, Ross D A et al (eds) Initial Rep Deep Sea Drill Proj 23: 821–847Google Scholar
  139. Svalnov VN, Strizhov VP, Bogdanov YA, Isayeva AB (1984) Hydrothermal barite crust on basalt in the Atlantis II Deep (Red Sea). Oceanology 24:716–720Google Scholar
  140. Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166CrossRefGoogle Scholar
  141. Swift SA, Bower A, Schmitt RW (2012) Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea. Deep Sea Res I 64:118–128CrossRefGoogle Scholar
  142. Tornos F (2006) Environment of formation and styles of volcanogenic massive sulphides: the Iberian Pyrite belt. Ore Geol Rev 28:259–307CrossRefGoogle Scholar
  143. Tornos F, Heinrich CA (2008) Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits. Chem Geol 247:195–207CrossRefGoogle Scholar
  144. Tornos F, Solomon M, Conde C, Spiro BF (2008) Formation of the Tharsis massive sulphide deposit, Iberian Pyrite belt: geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214CrossRefGoogle Scholar
  145. Turner JS, Campbell IH (1987) Temperature, density and buoyancy fluxes in “black smoker” plumes, and the criterion for buoyancy reversal. Earth Planet Sci Lett 86:85–92CrossRefGoogle Scholar
  146. Turner JS, Gustafson LB (1978) The flow of hot saline solutions from vents in the seafloor—some implications for exhalative massive sulfide and other ore deposits. Econ Geol 73:1082–1100CrossRefGoogle Scholar
  147. Von Damm KL (2001) Lost city found. Nature 412:127–128CrossRefGoogle Scholar
  148. Whitmarsh RB, Weser OE, Ross DA et al (1974) Initial Rep Deep Sea Drill Proj 23:539–751Google Scholar
  149. Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rübel AP, Bayer R, Stoffers P (2001) Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett 184:671–683CrossRefGoogle Scholar
  150. Yang J, Large RR (2001) Computational modelling of hydrothermal ore-forming fluid migration in complex earth structures. In: Xie X, Wang X, Jiang X (eds) Computer applications in the mineral industry. Swets and Zeitlinger, Lisse, pp 115–120Google Scholar
  151. Yang J, Latychev K, Edwards RN (1998) Numerical computation of hydrothermal fluid circulation in fractured Earth structures. Geophys J Int 135:627–649CrossRefGoogle Scholar
  152. Zierenberg RA (1990) Deposition of metalliferous sediments beneath a brine pool in the Atlantis II Deep, Red Sea. In: McMurray RG (ed) Gorda Ridge—a seafloor spreading center in the United States’ exclusive economic zone. Springer, New York, pp 131–142Google Scholar
  153. Zierenberg RA, Holland ME (2004) Sedimented ridges as a laboratory for exploring the subsurface biosphere. AGU Geophys Monogr Ser 144:305–323Google Scholar
  154. Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II deep, Red Sea. Econ Geol 76:57–72CrossRefGoogle Scholar
  155. Zierenberg RA, Shanks WC III (1986) Isotopic constraints on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim Cosmochim Acta 50:2205–2214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of Minnesota—DuluthDuluthUSA

Personalised recommendations