Mineralium Deposita

, Volume 49, Issue 8, pp 905–932 | Cite as

Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions

  • Peter J. DownesEmail author
  • Attila Demény
  • György Czuppon
  • A. Lynton Jaques
  • Michael Verrall
  • Marcus Sweetapple
  • David Adams
  • Neal J. McNaughton
  • Lalchand G. Gwalani
  • Brendan J. Griffin


The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated in the southern Halls Creek Orogen adjacent to the Kimberley Craton in northern Western Australia. The CRCC is a composite, subvertical to vertical stock ∼2 km across with a rim of phlogopite–diopside clinopyroxenite surrounding a plug of calcite carbonatite and dolomite carbonatite dykes and veins that contain variable proportions of apatite–phlogopite–magnetite ± pyrochlore ± metasomatic Na–Ca amphiboles ± zircon. Early high-Sr calcite carbonatites (4,800–6,060 ppm Sr; La/YbCN = 31.6–41.5; δ13C = −4.2 to −4.0 ‰) possibly were derived from a carbonated silicate parental magma by fractional crystallization. Associated high-Sr dolomite carbonatites (4,090–6,310 ppm Sr; La/YbCN = 96.5–352) and a late-stage, narrow, high rare earth element (REE) dolomite carbonatite dyke (La/YbCN = 2756) define a shift in the C–O stable isotope data (δ18O = 7.5 to 12.6 ‰; δ13C = −4.2 to −2.2 ‰) from the primary carbonatite field that may have been produced by Rayleigh fractionation with magma crystallization and cooling or through crustal contamination via fluid infiltration. Past exploration has focussed primarily on the secondary monazite-(Ce)-rich REE and U mineralization in the oxidized zone overlying the carbonatite. However, high-grade primary hydrothermal REE mineralization also occurs in narrow (<1 m wide) shear-zone hosted lenses of apatite–monazite-(Ce) and foliated monazite-(Ce)–talc rocks (≤∼25.8 wt% total rare earth oxide (TREO); La/YbCN = 30,085), as well as in high-REE dolomite carbonatite dykes (3.43 wt% TREO), where calcite, parisite-(Ce) and synchysite-(Ce) replace monazite-(Ce) after apatite. Primary magmatic carbonatites were widely hydrothermally dolomitized to produce low-Sr dolomite carbonatite (38.5–282 ppm Sr; La/YbCN = 38.4–158.4; δ18O = 20.8 to 21.9 ‰; δ13C = −4.3 to −3.6 ‰) that contains weak REE mineralization in replacement textures, veins and coating vugs. The relatively high δD values (−54 to −34 ‰) of H2O derived from carbonatites from the CRCC indicate that the fluids associated with carbonate formation contained a significant amount of crustal component in accordance with the elevated δ13C values (∼−4 ‰). The high δD and δ13C signature of the carbonatites may have been produced by CO2–H2O metasomatism of the mantle source during Paleoproterozoic subduction beneath the eastern margin of the Kimberley Craton.


Carbonatite REE mineralization H–C–O stable isotopes Phoscorite Clinopyroxenite Monazite-(Ce) Kimberley 



We would like to thank Bernie Kirkpatrick from Navigator Resources and Geoff Collis from Kimberley Rare Earths for providing samples and geological data from the CRCC, as well as company illustrations and images. Geochemical analyses were funded, in part, by the Geological Survey of Western Australia, the Hungarian Academy of Sciences and the Western Australian Museum. We thank Liz Webber and Bill Pappas for the geochemical analyses undertaken at Geoscience Australia and Jeremy Wykes for the LA-ICP-MS analyses done at ANU. James Tolley (ANU) kindly provided a digital version of the simplified geological map. Dr. Lena Hancock from the Geological Survey of Western Australia (GSWA) provided HyLogger data and helped with discussions of the Cummins Range geology. The staff of the GSWA core library provided access to and samples from the Cummins Range drill core. Prof. A.E. Williams-Jones and an anonymous reviewer provided very helpful detailed reviews of an earlier version of this manuscript. Dr. Ben Grguric gave helpful guidance in the interpretation of sulphide and replacement textures.

Supplementary material

126_2014_552_MOESM1_ESM.xlsx (13.6 mb)
Appendix 1 (XLSX 13893 kb)


  1. Anderson DL, Mogk DW, Childs JF (1990) Petrogenesis and timing of talc formation in the Ruby Range, southwestern Montana. Econ Geol 85:585–600CrossRefGoogle Scholar
  2. Andrew R (1990) Cummins Range carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. AusIMM, Melbourne, pp 711–713Google Scholar
  3. Belousova EA, Griffin WL, O’Reilly SY, Fisher N (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622. doi: 10.1007/s00410-002-0364-7 CrossRefGoogle Scholar
  4. Brady JB, Cheney JT, Rhodes AL, Vasquez A, Green C, Duvall M, Kogut A, Kaufman L, Kovaric D (1998) Isotope geochemistry of Proterozoic talc occurrences in Archean marbles of the Ruby Mountains, southwest Montana, USA. Geol Mater Res 1:1–41CrossRefGoogle Scholar
  5. Bühn B (2008) The role of the volatile phase for REE and Y fractionation in low-silica carbonate magmas: implications from natural carbonatites, Namibia. Mineral Petrol 92(3–4):453–470CrossRefGoogle Scholar
  6. Bühn B, Wall F, Le Bas MJ (2001) Rare-earth element systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution. Contrib Mineral Petrol 141(5):572–591CrossRefGoogle Scholar
  7. Cawood PA, Korsch RJ (2008) Assembling Australia: Proterozoic building of a continent. Precambrian Res 166:1–38CrossRefGoogle Scholar
  8. Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites.Chem Geol 235:138–160. doi: 10.1016/j.chemgeo.2006.06.008
  9. Chakhmouradian AR (2009) The geochemistry of carbonatites revisited: two major types of continental carbonatites and their trace-element signatures. In: geophysical research abstracts of the EGU General Assembly, Vienna, Austria, 19–24 April 2009., p 10806 11:10806
  10. Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8(5):347–353CrossRefGoogle Scholar
  11. Chakhmouradian AR, Mumin A, Demény A, Elliott B (2008) Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): geological setting, mineralogy and geochemistry. Lithos 103:503–526CrossRefGoogle Scholar
  12. Chakhmouradian AR, Böhm CO, Demény A, Reguir EP, Hegner E, Creaser RA, Halden NM, Yang P (2009) “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos 112:347–357. doi: 10.1016/j.lithos.2009.03.039 CrossRefGoogle Scholar
  13. Czuppon G, Ramsay RR, Özgenc I, Demény A, Gwalani LG, Rogers K, Eves A, Papp L, Palcsu L, Berkesi M, Downes PJ (2014) Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah dome, Kimberley region, western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-fluid mixing. Miner Petrol. doi: 10.1007/s00710-014-0333-7 Google Scholar
  14. De Toledo M, Lenharo S, Ferrari V, Fontan F, De Parseval P, Leroy G (2004) The compositional evolution of apatite in the weathering profile of the Catalão I alkaline-carbonatitic complex, Goiás, Brazil. Can Mineral 42:1139–1158CrossRefGoogle Scholar
  15. Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 301–359Google Scholar
  16. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 58:247–278Google Scholar
  17. Demény A (1995) H isotope fractionation due to hydrogen-zinc reactions and its implications on D/H analysis of water samples. Chem Geol 121:19–25CrossRefGoogle Scholar
  18. Demény A, Siklósy Z (2008) Combination of off-line preparation and continuous flow mass spectrometry: D/H analyses of inclusion waters. Rapid Commun Mass Spect 22:1329–1334CrossRefGoogle Scholar
  19. Demény A, Ahijado A, Casillas R, Vennemann TW (1998) Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study. Lithos 44(3–4):101–115CrossRefGoogle Scholar
  20. Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of carbonatite complexes of the Kola alkaline province: phoscorite-carbonatite relationships and source compositions. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine. Mineralogical Society Series 10. Mineralogical Society, London, pp 407–431Google Scholar
  21. Demény A, Harangi S, Vennemann TW, Casillas R, Horváth P, Milton AJ, Mason PRD, Ulianov A (2012) Amphiboles as indicators of mantle source contamination: combined evaluation of stable H and O isotope compositions and trace element ratios. Lithos 152:141–156. doi: 10.1016/j.lithos.2012.07.001 CrossRefGoogle Scholar
  22. Downes H, Balaganskaya E, Beard AD, Liferovich RP, Demaiffe D (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review. Lithos 85:48–75. doi: 10.1016/j.lithos.2005.03.020 CrossRefGoogle Scholar
  23. Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134:311–326. doi: 10.1016/S0009-2541(96)00100-3
  24. Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70CrossRefGoogle Scholar
  25. Geological Survey of Western Australia (2011) Investment opportunities–rare earths. Accessed 20 December 2013
  26. Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510CrossRefGoogle Scholar
  27. Graham S, Lambert D, Shee S (2004) The petrogenesis of carbonatite, melnoite and kimberlite from the Eastern Goldfields Province, Yilgarn Craton. Lithos 76:519–533CrossRefGoogle Scholar
  28. Griffin TJ, Page RW, Sheppard S, Tyler IM (2000) Tectonic implications of Palaeoproterozoic post-collisional, high-K felsic igneous rocks from the Kimberley region of northwestern Australia. Precambrian Res 101:1–23CrossRefGoogle Scholar
  29. Hassan LY (2000) Mineral occurrences and exploration potential of the East Kimberley. Geological Survey of Western Australia Report 74. Department of Minerals and Energy, Perth, p 60Google Scholar
  30. Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol 155:115–130CrossRefGoogle Scholar
  31. Honda M, Phillips D, Kendrick MA, Gagan MK, Taylor WR (2012) Noble gas and carbon isotope ratios in argyle diamonds, Western Australia: evidence for a deeply subducted volatile component. Aust J Earth Sci 59(8):1135–1142CrossRefGoogle Scholar
  32. Ivanikov V, Rukhlov A, Bell K (1998) Magmatic evolution of the melilitite–carbonatite–nephelinite dyke series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia). J Petrol 39:2043–2059Google Scholar
  33. Jaques AL, Milligan PR (2004) Patterns and controls on the distribution of diamondiferous intrusions in Australia. Lithos 77(1–4):783–802CrossRefGoogle Scholar
  34. Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western Australia. Geol Surv of W Aust Bull 132:268Google Scholar
  35. Jaques AL, Hall AE, Sheraton JV, Smith CB, Sun SS, Drew R, Foudoulis C, Ellingsen K (1989a) Composition of crystalline inclusions and C-isotopic composition of Argyle and Ellendale diamonds. In: Ross J et al. (eds) Kimberlites and related rocks: their crust/mantle setting, diamonds and diamond exploration. Geol Soc Australia Spec Publ 14, vol. 2. Blackwell, Oxford, p 966–989Google Scholar
  36. Jaques AL, Sun SS, Chappell BW (1989b) Geochemistry of the Argyle (AK1) lamproite pipe, Western Australia. In: Ross J et al. (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement. Geol Soc Australia Spec Publ 14, vol. 1. Blackwell, Oxford, p 170–188Google Scholar
  37. Jenner FE, O’Neill HS-C (2012) Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochem Geophys Geosyst 13, Q03003. doi: 10.1029/2011GC003890 Google Scholar
  38. Johnson SP (2013) The birth of supercontinents and the Proterozoic assembly of Western Australia. Geological Survey of Western Australia, Perth, p 78Google Scholar
  39. Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Springer Verlag, Berlin, pp 113–123CrossRefGoogle Scholar
  40. Kimberley Rare Earths Limited (2012) Annual report to shareholders. Perth, Western Australia, pp 1–54. Accessed 20 December 2013
  41. Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F (2004) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series 10. Mineralogical Society, London, pp 45–74Google Scholar
  42. Lee W, Wyllie PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J Petrol 39:2005–2013CrossRefGoogle Scholar
  43. Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova GP, Roffey SL, Rayner MJ, Lorand JP (2009) An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112:1096–1108CrossRefGoogle Scholar
  44. McCulloch MT, Jaques AL, Nelson D, Lewis JD (1983) Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302:400–403CrossRefGoogle Scholar
  45. Myers JS, Shaw RD, Tyler IM (1996) Tectonic evolution of Proterozoic Australia. Tectonics 15:1431–1446CrossRefGoogle Scholar
  46. Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52(1):1–18CrossRefGoogle Scholar
  47. Ngwenya BT (1994) Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochim Cosmochim Acta 58(9):2061–2072CrossRefGoogle Scholar
  48. Norrish K, Chappell BW (1977) X-ray fluorescence spectrometry. In: Zussman J (ed) Physical methods in determinative mineralogy, 2nd edn. Academic Press, London, pp 201–272Google Scholar
  49. Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33(4):431–453CrossRefGoogle Scholar
  50. Palme H, O’Neill HSC (2005) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, vol. 2 treatise on geochemistry. Elsevier–Pergamon, Oxford, pp 1–38Google Scholar
  51. Paton C, Hellstrom J, Bence P, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  52. Pidgeon RT, Smith CB, Fanning CM (1986) The ages of kimberlite and lamproite emplacement in Western Australia. In: Abstracts of the 4th international kimberlite conference, Geological Society of Australia, Perth, 1986. pp 136–138Google Scholar
  53. Pyke J (2000) Minerals laboratory staff develops new ICP-MS preparation method. Aust Geol Survey Org Res Newslett 33:12–14Google Scholar
  54. Ray J, Ramesh R (1999) Evolution of carbonatite complexes of the Deccan flood basalt province: stable carbon and oxygen isotopic constraints. J Geophys Res 104:29471–29483CrossRefGoogle Scholar
  55. Ray J, Ramesh R (2000) Rayleigh fractionation of stable isotopes from a multicomponent source. Geochim Cosmochim Acta 64:299–306CrossRefGoogle Scholar
  56. Ray JS, Ramesh R (2006) Stable carbon and oxygen isotopic compositions of Indian carbonatites. Int Geol Rev 48:17–45. doi: 10.2747/0020-6814.48.1.17 CrossRefGoogle Scholar
  57. Ray JS, Pande K, Bhutani R, Shukla AD, Rai VK, Kumar A, Awasthi N, Smitha RS, Panda DK (2013) Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma. Contrib Mineral Petrol 166:1613–1632. doi: 10.1007/s00410-013-0945-7 CrossRefGoogle Scholar
  58. Richards MN (1984) Annual report for 1983 on exploration licence 80/113, Cummins Range, Mt. Bannerman, SE52-13, Western Australia. CRA Exploration Pty. Ltd. Report to West Australian Department of Mines and Petroleum, A14632, CRAE Ref. No. 12981, 40 ppGoogle Scholar
  59. Richards MN (1985) Annual report for 1984 on exploration licence 80/113, Cummins Range, Mt. Bannerman, SE52-13, Western Australia, Volume 1. CRA Exploration Pty. Ltd. Report to West Australian Department of Mines and Petroleum, A16631, CRAE Ref. No. 13612, 20 ppGoogle Scholar
  60. Ruberti E, Enrich GER, Gomes CB, Comin-Chiaramonti P (2008) Hydrothermal REE fluorocarbonate mineralization at Barra do Itapirapua, a multiple stockwork carbonatite, southern Brazil. Can Mineral 46(4):901–914CrossRefGoogle Scholar
  61. Sanders TS (1999) Mineralization of the Halls Creek Orogen, east Kimberley region, Western Australia. Geological Survey of Western Australia Report 66. Department of Minerals and Energy, Perth, p 44Google Scholar
  62. Santos R, Clayton RN (1995) Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochim Cosmochim Acta 59:1339–1352CrossRefGoogle Scholar
  63. Schulze D, Harte B, Page FZ, Valley JW, Channer DMDR, Jaques AL (2013) Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41:455–458CrossRefGoogle Scholar
  64. Shapiro LM, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate rocks. US Geological Survey Bulletin 1144-A. US Government Printing Office, Washington, DC.Google Scholar
  65. Sheppard S (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor Jr HP, O’Neil JR (eds) Reviews in Mineralogy 16, Stable isotopes in high temperature geological processes. Mineralogical Society of America, Chantilly, pp 165–184Google Scholar
  66. Sheppard S, Page RW, Griffin TJ, Rasmussen B, Fletcher IR, Tyler IM, Kirkland CL, Wingate MTD, Hollis JA, Thorne AM (2012) Geochronological and isotopic constraints on the tectonic setting of the c. 1800 Ma Hart Dolerite and the Kimberley and Speewah Basins, Northern Western Australia. Geological Survey of Western Australia Record 2012/7, 28 ppGoogle Scholar
  67. Smith MP, Henderson P, Peishan Z (1999) Reaction relationships in the Bayan Obo Fe-REE-Nb deposit Inner Mongolia, China: implications for the relative stability of rare earth element phosphates and fluorocarbonates. Contrib Mineral Petrol 134:294–310Google Scholar
  68. Spötl C, Vennemann TW (2003) Continuous-flow IRMS analysis of carbonate minerals. Rapid Commun Mass Spectrom 17:1004–1006CrossRefGoogle Scholar
  69. Sun S-S, Jaques AL, McCulloch MT (1986) Isotopic evolution of the Kimberley Block, Western Australia. In: Abstracts of 4th international kimberlite conference, Geological Society of Australia 16, Perth, 1986. pp 346–348Google Scholar
  70. Taylor HP Jr, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany, and the Alno district, Sweden. Geochim Cosmochim Acta 31:407–430CrossRefGoogle Scholar
  71. Tornos F, Spiro BF (2000) The geology and isotope geochemistry of the talc deposits of Puebla de Lillo (Cantabrian Zone, Northern Spain). Econ Geol 95:1277–1296Google Scholar
  72. Tyler IM, Page RW, Griffin TJ (1999) Depositional age and provenance of the Marboo Formation from SHRIMP U–Pb zircon geochronology: implications for the early Palaeoproterozoic tectonic evolution of the Kimberley region, Western Australia. Precambrian Res 95:225–243CrossRefGoogle Scholar
  73. Tyler IM, Hocking RM, Haines PW (2012) Geological evolution of the Kimberley region of Western Australia. Episodes 35:298–306Google Scholar
  74. Verhulst A, Balaganskaya E, Kirnarsky Y, Demaiffe D (2000) Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos 51:1–25Google Scholar
  75. Vindel E, Chicharro E, Villaseca C, López-García JÁ, Sánchez V (2014) Hydrothermal phosphate vein-type ores from the southern Central Iberian Zone, Spain: Evidence for their relationship to granites and Neoproterozoic metasedimentary rocks. Ore Geol Rev 62:143–155. doi: 10.1016/j.oregeorev.2014.03.011
  76. Wall F, Mariano AN (1996) Rare earth minerals in carbonatites: a discussion centered on the Kangankunde carbonatite, Malawi. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Mineralogical Society Series 7. Mineralogical Society, London, pp 193–225Google Scholar
  77. Wall F, Zaitsev AN (2004) Rare earth minerals in Kola carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series 10. Mineralogical Society, London, pp 341–373Google Scholar
  78. Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements – a tale of “ceria” and “yttria”. Elements 8(5):355–360CrossRefGoogle Scholar
  79. Zaitsev AN, Demény A, Sindern S, Wall F (2002) Burbankite group minerals and their alteration in rare earth carbonatites–source of elements and fluids (evidence from CO and Sr-Nd isotopic data). Lithos 62:15–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter J. Downes
    • 1
    Email author
  • Attila Demény
    • 2
  • György Czuppon
    • 2
  • A. Lynton Jaques
    • 3
  • Michael Verrall
    • 4
  • Marcus Sweetapple
    • 4
  • David Adams
    • 5
    • 6
  • Neal J. McNaughton
    • 7
  • Lalchand G. Gwalani
    • 8
  • Brendan J. Griffin
    • 5
  1. 1.Department of Earth and Planetary SciencesWestern Australian MuseumWelshpool DCAustralia
  2. 2.Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesBudaörsi út 45Hungary
  3. 3.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  4. 4.CSIRO Earth Science and Resource EngineeringPerthAustralia
  5. 5.Centre for Microscopy, Characterisation and Analysis, M010University of Western AustraliaCrawleyAustralia
  6. 6.GEMOC, Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  7. 7.John de Laeter Centre for Isotope Research, Department of Applied GeologyCurtin UniversityPerthAustralia
  8. 8.Speewah Research Project C/King River Copper LimitedPerthAustralia

Personalised recommendations