Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization

  • 1098 Accesses

  • 36 Citations

Abstract

The formation of major granite-hosted Sn and/or W deposits and lithium–cesium–tantalum (LCT) type pegmatites in the Acadian, Variscan, and Alleghanian orogenic belts of Europe and Atlantic Northern America involves weathering-related Sn and W enrichment in the sedimentary debris of the Cadomian magmatic arc and melting of these sedimentary source rocks during later tectonic events, followed by magmatic Sn and W enrichment. We suggest that within this, more than 3,000-km long late Paleozoic belt, large Sn and/or W deposits are only found in regions where later redeposition of the Sn–W-enriched weathered sediments, followed by tectonic accumulation, created large volumes of Sn–W-enriched sedimentary rocks. Melting of these packages occurred both during the formation of Pangea, when continental collision subjected these source rocks to high-grade metamorphism and anatexis, and during post-orogenic crustal extension and mantle upwelling. The uncoupling of source enrichment and source melting explains (i) the diachronous occurrence of tin granites and LCT pegmatites in this late Paleozoic orogenic belt, (ii) the occurrence of Sn and/or W mineralizations and LCT pegmatites on both sides of the Rheic suture, and (iii) the contrasting tectonic setting of Sn and/or W mineralizations within this belt. Source enrichment, sedimentary and tectonic accumulation of the source rocks, and heat input to mobilize metals from the source rocks are three unrelated requirements for the formation of Sn and/or W granites. They are the controlling features on the large scale. Whether a particular granite eventually generates a Sn and/or W deposit depends on local conditions related to source melting, melt extraction, and fractionation processes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Avigad D, Sandler A, Kolodner K, Stern RJ, McWilliams M, Miller N, Beyth M (2005) Mass-production of Cambro–Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: environmental implications. Earth Planet Sci Lett 240:818–826

  2. Badanina EV, Syritso LF, Volkova EV, Thomas R, Trumbull RB (2010) Composition of Li–F granite melt and its evolution during the formation of the ore-bearing Orlovka Massif in Eastern Transbaikalia. Petrology 18:131–157

  3. Bauluz B, Mayayo MJ, Fernandez-Nieto C, Gonzalez Lopez JM (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150

  4. Beetsma JJ (1995) The late Proterozoic/Paleozoic and Hercynian crustal evolution of the Iberian Massif, Northern Portugal. Ph.D. thesis, Vrije University, Amsterdam

  5. Bradley DC, McCauley A, Buchwaldt R, Shea EK, Bowring S (2012) Lithium-cesium-tantalum pegmatites through time, their orogenic context, and relationships to the supercontinent cycle. Geol Soc Am Abstr Programs 44(7):294

  6. Breiter K, Sokolová M, Sokol A (1991) Geochemical specialization of tin-bearing granitoid massifs of NW Bohemia. Miner Depos 26:298–306

  7. Černý P (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochem 7:393–416

  8. Černý P (2005) REE-enriched granitic pegmatites. In: Linnen RL, Sampson IM (eds) Rare–Element Geochemistry and Mineral Deposits. Geol Soc Can Short Course Notes 17:175–199

  9. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

  10. Černý P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294

  11. Chen Y, Clark AH, Farrar E, Wasteneys HAHP, Hodgson MJ, Bromley AV (1993) Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England. J Geol Soc 150:1183–1191

  12. Chesley JT, Halliday AN, Snee LW, Mezger K, Shepherd TJ, Scrivener RC (1993) Thermochronology of the Cornubian batholith in southwest England: implications for pluton emplacement and protracted hydrothermal mineralization. Geochim Cosmochim Acta 57:1817–1837

  13. Clark C, Fitzsimmons ICW, Healy D (2011) How does the continental crust get really hot? Elements 7:235–240

  14. Cuney M, Barbey P (2014) Uranium, rare metals, and granulite facies metamorphism. Geosci Front. doi:10.1016/j.gsf.2014.03.011

  15. Cuney M, Alexandrov P, Carlier L, de Veslud C, Cheilletz A, Raimbault L, Ruffet G, Scaillet S (2002) The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). Geol Soc Lond Spec Publ 204:213–228

  16. Darbyshire DPF, Shepherd TJ (1994) Nd and Sr isotope constraints on the origin of the Cornubian batholith, SW England. J Geol Soc 151:795–802

  17. De Wit MJ, Thiart C, Doucouré M, Wilsher W (1999) Scent of a supercontinent: Gondwana’s ores as chemical tracers—tin, tungsten, and the Neoproterozoic Laurentia-Gondwana connection. J Afr Earth Sci 28:35–51

  18. Dietrich A, Lehmann B, Wallianos A (2000) Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Econ Geol 95:313–326

  19. Drost K, Romer RL, Linnemann U, Kraft P, Fatka O, Marek J (2007) Nd-Sr-Pb isotopic signatures of Neoproterozoic—early paleozoic siliciclastic rocks in response to changing geotectonic regimes: a case study from the Barrandian area (Bohemian Massif, Czech Republic). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Spec Pap 423:191–208

  20. Edmond JM, Huh Y (1997) Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman WF (ed) Tectonic uplift and climate change. Springer, New York, pp 329–351

  21. Falk F, Hahne K, Lützner H, Gehmlich M (2000) Der Beginn siliziklastischer Sedimentation im Altpaläozoikum des Saxothuringikums: Sedimentologie und Geochemie des Richtprofils Goldisthal (Thüringisches Schiefergebirge). Z Dt Geol Ges 151:365–414

  22. Förster H-J, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 287–308

  23. Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge (Germany). J Petrol 40:1613–1645

  24. Gasquet D, Leterrier J, Mrini Z, Vidal P (1992) Petrogenesis of the Hercynian Tichka plutonic complex (Western High Atlas, Morocco): trace element and Rb–Sr and Sm–Nd isotopic constraints. Earth Planet Sci Lett 108:29–44

  25. Hahne K, Naumann R (2006) Mineralogisch-geochemisches Normalprofil für das Silur des Saxothuringikums. In: Heuse T, Leonhardt D (eds) Stratigraphie von Deutschland VII, Silur. Schr Dt Ges Geowiss 46:153–16

  26. Hampton CM, Taylor PN (1983) The age and nature of the basement of southern Britain: evidence from Sr and Pb isotopes in granites. J Geol Soc 140:499–509

  27. Johnsson MJ, Stallard RF (1989) Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama. J Sediment Res 59:768–781

  28. Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. Miner Depos 39:646–669

  29. Kohút M, Stein H (2005) Re–Os molybdenite dating of granite-related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineral Petrol 85:117–129

  30. Kontak DJ (1990) The East Kemptville topaz–muscovite leucogranite, Nova Scotia I. Geological setting and whole-rock geochemistry. Can Mineral 28:787–825

  31. Kontak DJ, Farrar E, McBride S, Martin RF (1995) Mineral chemistry and 40Ar/39Ar dating of muscovite from the East Kemptville leucogranite, southern Nova Scotia: evidence for localized resetting of 40Ar/39Ar systematics in a shear zone. Can Mineral 33:1237–1253

  32. Kontak DJ, Creaser RA, Heaman LM, Archibald DA (2005) U–Pb tantalite, Re–Os molybdenite, and 40Ar/39Ar muscovite dating of the Brazil Lake pegmatite, Nova Scotia: a possible shear-zone related origin for an LCT-type pegmatite. Atlantic Geol 41:17–29

  33. Kronberg BI, Fyfe WS, McKinnon BJ, Couston BJ, Stilianidi Filho B, Nash RA (1982) Model for bauxite formation: Paragominas (Brazil). Chem Geol 35:311–320

  34. Kroner U, Romer RL (2010) The Saxo-Thuringian Zone—tip of the Armorican Spur and part of the Gondwana plate. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 371–394

  35. Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogen revisited. Gondwana Res 24:298–329

  36. Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian Zone—heterogeneous overprint of Cadomian/Palaeozoic Peri-Gondwana crust. Geol Soc Am Spec Pap 423:153–172

  37. Küster D, Romer RL, Tolessa D, Zerihun D, Bheemalingeswara K, Melcher F, Oberthür T (2009) The Kenticha rare-element pegmatite, Ethiopia: internal differentiation, U-Pb age and Ta mineralization. Miner Depos 44:723–750

  38. Kydonakis K, Kostopoulos D, Poujol M, Brun J-P, Papanikolaou D, Paquette J-L (2014) The dispersal of the Gondwana super-fan system in the eastern Mediterranean: new insights from detrital zircon geochronology. Gondwana Res 23:1230–1241

  39. Landes KK (1935) Age and distribution of pegmatites. Am Mineral 20:81–105 and 153–175

  40. Lehmann B (1982) Metallogeny of tin: Magmatic differentiation versus geochemical heritage. Econ Geol 77:50–59

  41. Lehmann B (1987) Tin granites, geochemical heritage, magmatic differentiation. Geol Rundsch 76:177–185

  42. Lehmann B, Mahawat C (1989) Metallogeny of tin in central Thailand: a genetic concept. Geology 17:426–429

  43. Linnemann U, Romer RL (2002) The Cadomian orogeny in Saxo-Thuringia, Germany: geochemical and Nd-Sr-Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64

  44. Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K, (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D. (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol Soc London Spec Publ 179:131–153

  45. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705

  46. Linnemann U, Herbosch A, Liégeois J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth-Sci Rev 112:126–154

  47. Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits. Geol Assoc Can Short Course Notes 17:45–67

  48. London D, Morgan GB, Acosta-Vigil A (2012) Experimental simulations of anatexis and assimilation involving metapelite and granitic melt. Lithos 153:292–307

  49. Maaß I, Hahne K, Loos G, Vogler P (1986) Isotopen- und elementgeochemische Untersuchungen an schwach metamorphen Sedimenten als Hilfsmittel zur faziellen und stratigraphischen Einordnung. Isotopenpraxis 22:131–135

  50. Marignac C, Cuney M (1999) Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineral Deposita 34:472–504

  51. McCauley A, Bradley DC (2011) Age distribution of lithium-cesium-tantalum enriched pegmatites and relationships to orogeny. AGU Fall meeting, abstr. #V13B-2600

  52. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Res 23:661–665

  53. Melleton J, Gloaguen E, Frei D, Novák M, Breiter K (2012) How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian massif, Czech Republic? Can Mineral 50:1751–1773

  54. Mingram B (1996) Geochemische Signaturen der Metasedimente des erzgebirgischen Krustenstapels. Sci. Tech. Rep., STR96/04, GeoForschungsZentrum Potsdam

  55. Mingram B (1998) The Erzgebirge, Germany, a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units. Geol Mag 135:785–801

  56. Mingram B, Rötzler K (1999) Geochemische, petrologische und geochronologische Untersuchungen im Erzgebirgskristallin – Rekonstruktion eines Krustenstapels. Schr Geowiss 9:1–72

  57. Montel JM, Marignac V, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J Metamorph Geol 10:1–75

  58. Müller A, Seltmann R, Halls C, Siebel W, Dulski P, Jeffries T, Spratt J, Kronz A (2006) The magmatic evolution of the land’s end pluton, Cornwall, and associated pre-enrichment of metals. Ore Geol Rev 28:329–367

  59. Murphy JB, Keppie JD (2005) The Acadian Orogeny in the Northern Appalachians. Int Geol Rev 47:663–687

  60. Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328

  61. Nabelek PI, Russ-Nabelek C, Denison JR (1992) The generation and crystallization conditions of the Proterozoic Harney Peak Leucogranite, Black Hills, South Dakota, USA: Petrologic and geochemical constraints. Contrib Mineral Petrol 110:173–191

  62. Nägler TF, Schäfer H-J, Gebauer D (1995) Evolution of the Western European continental crust: implications from Nd and Pb isotopes in Iberian sediments. Chem Geol 121:345–357

  63. Neiva AMR, Williams IS, Ramos JMF, Gomes MEP, Silva MMVG, Antunes IMHR (2009) Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. Lithos 111:186–202

  64. Neiva AMR, Williams IS, Lima SM, Teixeira RJS (2012) U–Pb and 39Ar/40Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos 153:72–83

  65. Noblet C, Lefort JP (1990) Sedimentological evidence for a limited separation between Armorica and Gondwana during the Early Ordovician. Geology 18:303–306

  66. Novák M (2005) Granitické pegmatity Českého masivu (Česká republika); minerlogická, geochemická a regionáliní klasifikace a geologický význam (Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical, and regional classification and geological significance. Acta Musei Moraviae Sci Geol 30:3–74

  67. Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998) U-Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Univ Carol Geol 42:309–310

  68. Osberg PH, Tull JF, Robinson P, Hon R, Butler JR (1989) The Acadian Orogen In: Hatcher RD jr, Thomas WA, Viele GW (eds) The Appalachian-Ouachita orogen in the United States. Geol Soc Am, The Geology of North America, v. F-2:179–232

  69. Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

  70. Robinson P, Tucker RD, Bradley D, Berry HN, Osberg PH (1998) Paleozoic orogens in New England, USA. GFF 120:119–148

  71. Romer RL, Hahne K (2010) Life of the Rheic Ocean: Scrolling through the shale record. Gondwana Res 17:236–253

  72. Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Depos 42:337–359

  73. Romer RL, Kirsch M, Kroner U (2011) Geochemical signature of Ordovician Mn-rich sedimentary rocks on the Avalonian shelf. Can J Earth Sci 48:703–718

  74. Romer RL, Förster H-J, Hahne K (2012) Strontium isotopes—a persistent tracer for the recycling of Gondwana crust in the Variscan Orogen. Gondwana Res 22:262–278

  75. Romer RL, Meixner A, Förster H-J (2014a) Lithium and boron in late-orogenic granites—isotopic fingerprints for the source of crustal melts? Geochim Cosmochim Acta 131:98–114

  76. Romer RL, Meixner A, Hahne K (2014b) Lithium and boron isotopic composition of sedimentary rocks—the role of source history and depositional environment: a 250 Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Res. doi:10.1016/j.gr.2013.08.015

  77. Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration, 2nd edn. Academic, London, 657 pp

  78. Rötzler K, Plessen B (2010) The Erzgebirge: a pile of ultrahigh- to low-pressure nappes of Early Palaeozoic rocks and their Cadomian basement. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 253–270

  79. Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Rudnick RL (ed) Treatise on Geochemistry vol 3. Elsevier, Amsterdam, pp 1–64

  80. Sadequi M, Bouabdellah M, Boushaba A, Marcoux E, Cheilletz A (2013) Mineralogy, fluid inclusion, and oxygen isotope constraints on the genesis of the Lalla Zahra W-(Cu) deposit, Alouana district, northeastern Morocco. Arab J Geosci 6:3067–3085

  81. Schuiling RD (1967) Tin belts on the continents around the Atlantic Ocean. Econ Geol 62:540–550

  82. Sevigny JH, Hanson GN (1993) Orogenic evolution of the New England Appalachians of southwestern Connecticut. Geol Soc Am Bull 105:1591–1605

  83. Shail RK, Stuart FM, Wilkinson JJ, Boyce AJ (2003) The role of Post-Variscan extensional tectonics and mantle melting in the generation of lower Permian granites and the giant W–As–Sn–Cu–Zn–Pb orefield of SW England. Trans Inst Min Metall Sect B Appl Earth Sci 112:127–129

  84. Sinclair WD, Gonevchuk GA, Korostelev PG, Semenyak BI, Rodionov S, Seltmann R, Stemprock M (2011) World distribution of Tin and Tungsten Deposits. Geol Surv Can, Open File 5482, scale 1: 35 000 000. doi: 10.4095/287906

  85. Stallard RF (1995) Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu Rev Earth Planet Sci 23:11–39

  86. Štemprok M (1995) A comparison of the Krušné Hory-Erzgebirge (Czech Republic – Germany) and Cornish (UK) granites and their related mineralizations. Proc Ussher Soc 8:347–356

  87. Stone M (1992) The Tregonning granite: petrogenesis of Li-mica granites in the Cornubian batholith. Min Mag 56:141–155

  88. Stussi JM (1989) Granitoid chemistry and associated mineralization in the French Variscan. Econ Geol 84:1363–1381

  89. Swanson SE, Veal WB (2010) Mineralogy and petrogenesis of pegmatites in the Spruce Pine District, North Carolina, USA. J Geosci 55:27–42

  90. Talavera C, Montero P, Martínez Poyatos D, Williams IS (2012) Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Res 22:928–942

  91. Taylor RP, Lux DR, Maclellan HE, Hubacher F (1987) Age and genesis of granite-related W-Sn-Mo mineral deposits, Burnthill, New Brunswick, Canada. Econ Geol 82:2187–2198

  92. Thomas R, Förster H-J, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601

  93. Tomascak PB, Krogstad EJ, Walker RJ (1996) U–Pb monazite geochronology of granitic rocks from Maine: implications for late Paleozoic tectonics in the Northern Appalachians. J Geol 104:185–195

  94. Valle-Aguado B, Azevedo MR, Schaltegger U, Martínez Catalán JR, Nolan J (2005) U-Pb zircon and monazite geochronology of Variscan magmatism related to synconvergence extension in Central Northern Portugal. Lithos 82:169–184

  95. van Staal CR, Barr SM, Murphy JB (2012) Provenance and tectonic evolution of Ganderia: constraints on the evolution of the Iapetus and Rheic oceans. Geology 40:987–990

  96. Waldron JWF, White CE, Barr SM, Simonetti A, Heaman LM (2009) Provenance of the Meguma terrane, Nova Scotia: rifted margin of early Paleozoic Gondwana. Can J Earth Sci 46:1–8

  97. Waldron JWF, Schofield DI, White CE, Barr SM (2011) Cambrian successions of the Meguma Terrane, Nova Scotia, and Harlech Dome, North Wales: dispersed fragments of a peri-Gondwanan basin? J Geol Soc 168:83–98

  98. White CE (2010) Compilation of geochemical and petrographic data from the western and southern parts of the Goldenville and Halifax groups, Nova Scotia. Nova Scotia Dept Nat Res, Open File Rept 2010–001, pp. 18

  99. Wise MA, Brown CD (2010) Mineral chemistry, petrology and geochemistry of the Sebago granite–pegmatite system, southern Maine, USA. J Geosci 55:3–26

  100. Woodcock NH, Soper NJ, Strachan RA (2007) A Rheic cause for the Acadian deformation in Europe. J Geol Soc 164:1023–1036

  101. Zhang KJ (2004) Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth Planet. Sci Lett 229:73–89

Download references

Acknowledgments

We thank Lukáš Krmiček (Brno) for information on Czech Sn granites and rare-element pegmatites. We greatly appreciate constructive suggestions by two anonymous reviewers and thoughtful editorial handling by R.L. Linnen and G. Beaudoin.

Author information

Correspondence to Rolf L. Romer.

Additional information

Editorial handling: R. Linnen and G. Beaudoin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romer, R.L., Kroner, U. Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Miner Deposita 50, 327–338 (2015). https://doi.org/10.1007/s00126-014-0540-5

Download citation

Keywords

  • Tin granite
  • Rare element pegmatite
  • Tin province
  • Variscan orogeny
  • Crustal melting
  • Chemical weathering