Mineralium Deposita

, Volume 49, Issue 7, pp 861–877 | Cite as

Mineralisation of amethyst-bearing geodes in Ametista do Sul (Brazil) from low-temperature sedimentary brines: evidence from monophase liquid inclusions and stable isotopes

  • H. Albert Gilg
  • Yves Krüger
  • Heinrich Taubald
  • Alfons M. van den Kerkhof
  • Martin Frenz
  • Giulio Morteani
Article

Abstract

Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (−25 to −32 ‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (−59 to −51 ‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9 ‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.

Keywords

Amethyst Monophase fluid inclusions Retrograde homogenisation Density maximum Hydrogen isotopes Sulphur isotopes Sedimentary brines 

References

  1. Affolter S, Fleitmann D, Leuenberger M (2014) New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS). Clim Past Discuss 10:429–467CrossRefGoogle Scholar
  2. Araújo LM, França AB, Potter PE (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrogeol J 7:317–336CrossRefGoogle Scholar
  3. Audétat A, Günther D (1999) Mobility and H2O loss from fluid inclusions in natural quartz crystals. Contrib Mineral Petrol 137:1–14CrossRefGoogle Scholar
  4. Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids 7:1–25CrossRefGoogle Scholar
  5. Balzer R (2003) Rio Grande do Sul, Brasilien. Landschaften – Menschen – Edle Steine. Wenzel, Marburg, pp 1–236Google Scholar
  6. Baretto SB, Bittar SMB (2010) The gemstone deposits of Brazil: occurrences, production and economic impact. Bol Soc Geol Mexicana 62:123–140Google Scholar
  7. Blount CW, Dickson FW (1973) Gypsum-anhydrite equilibria in systems CaSO4-H2O and CaSO4-NaCl-H2O. Am Miner 58:323–331Google Scholar
  8. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Acta 57:683–684CrossRefGoogle Scholar
  9. Borget JN (1980) Contribution à l’étude de la genèse des minéralisations silicieuses associées aux roches basaltiques du nort-ouest de l’Uruguay. PhD thesis, University of Clermont-Ferrand, France, pp. 1–173Google Scholar
  10. Brückert V (2004) Physiological and ecological aspects of sulfur isotope fractionation during bacterial sulfate reduction. In: Amend JP, Edwards, KJ, Lyons TW (eds) Sulfur biogeochemistry. – past and present. GSA Spec Pub 379, pp. 1-26Google Scholar
  11. Cawley MF, McGlynn D, Mooney PA (2006) Measurement of the temperature of density maximum of water solutions using a convective flow technique. Int J Heat Mass Transfer 49:1763–1772CrossRefGoogle Scholar
  12. Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geological systems. Rev Mineral Geochem 43:1–81CrossRefGoogle Scholar
  13. Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3066CrossRefGoogle Scholar
  14. Commin-Fischer A, Berger G, Polvé M, Dubois M, Sardini P, Beaufort D, Formoso MLL (2010) Petrography and chemistry of SiO2 filling phases in the amethyst geodes from the Serra Geral Formation deposit, Rio Grande do Sul, Brazil. J South Am Earth Sci 29:751–760CrossRefGoogle Scholar
  15. Despretz M (1840) Le maximum de densité des liquids. Ann Chim Phys 73:296–310Google Scholar
  16. Duarte LC, Hartmann LA, Vasconcelos MAZ, Medeiros JTN, Theye T (2009) Epigenetic formation of amethyst-bearing geodes from Los Catalanes gemological district, Artigas, Uruguay, southern Paraná Magmatic Province. J Volcanol Geotherm Res 184:427–436CrossRefGoogle Scholar
  17. Duarte LC, Hartmann LA, Ronchi LH, Berner Z, Theye T, Massonne HJ (2011) Stable isotope and mineralogical investigation of the genesis of amethyst geodes in the Los Catalanes gemological district, Uruguay, southernmost Paraná volcanic province. Miner Depos 46:239–255CrossRefGoogle Scholar
  18. Fall A, Rimstidt JD, Bodnar RJ (2009) The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions. Amer Mineral 94:1569–1579CrossRefGoogle Scholar
  19. Fontes JC, Gonfiantini R (1967) Fractionnement isotopique de l’hydrogène dans l’eau de crystallization de gypse. Comptes Rend Acad Sci Paris Ser II 265:4–6Google Scholar
  20. Frank HT, Gomes MEB, Formoso ML (2009) Review of the areal extend and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências 36:49–57Google Scholar
  21. Gastmanns D, Chang KH, Hutcheon I (2010) Stable isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrogeol J 18:1497–1513CrossRefGoogle Scholar
  22. Giesemann A, Jäger HJ, Norman AL, Krouse HR, Brand WA (1994) On-line sulfur isotope determination using an element analyzer coupled to mass spectrometer. Analyt Chem 66:2816–2819CrossRefGoogle Scholar
  23. Gilg HA (2012) In the Beginnings: The Origins of Amethyst. In: Gilg HA, Liebetrau S, Staebler G, Wilson T (eds) Amethyst—uncommon vintage. Lithographie, Denver, Co, pp 10–13Google Scholar
  24. Gilg HA, Morteani G, Kostitsyn Y, Preinfalk C, Gatter I, Strieder AJ (2003) Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner Depos 38:1009–1025CrossRefGoogle Scholar
  25. Goldberg K, Garcia AJV (2000) Palaeobiogeography of the Bauru Group, a dinosaur-bearing Cretaceous unit, northeastern Paraná basin, Brazil. Cretaceous Res 21:241–254CrossRefGoogle Scholar
  26. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 31:1–199Google Scholar
  27. Gonfiantini R, Fontes JC (1963) Oxygen isotope fractionation in the water of crystallization of gypsum. Nature 200:644–646CrossRefGoogle Scholar
  28. Götze J, Plötze M, Fuchs H, Habermann D (1999) Defect structure and luminescence behaviour of agate—results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Miner Mag 63:149–163CrossRefGoogle Scholar
  29. Hardie LD (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200Google Scholar
  30. Hartmann LA, Wildner W, Duarte LC, Duarte SK, Pertille J, Arena KR, Martins LC, Dias NL (2010) Geochemical and scintillometric characterization and correlation of amethyst-bearing Paraná lavas from the Quaraí and Los Catalanes districts, Brazil and Uruguay. Geol Mag 147:954–970CrossRefGoogle Scholar
  31. Hartmann LA, Duarte LC, Massonne HJ, Michelin C, Rosenstengel LM, Bergmann M, Theye T, Pertille J, Arena KR, Duarte SK, Pinto VM, Barboza EG, Rosa MLCC, Wildner W (2012a) Sequential opening and filling of cavities forming vesicles, amygdales and giant amethyst geodes in lavas from the southern Paraná volcanic province, Brazil and Uruguay. Int Geol Rev 54:1–14CrossRefGoogle Scholar
  32. Hartmann LA, Medeiros JTN, Petruzzellis LT (2012b) Numerical simulations of amethyst geode cavity formation by ballooning of altered Paraná volcanic rocks, South America. Geofluids 12:133–141CrossRefGoogle Scholar
  33. Hofmann BA, Farmer JD, von Blankenburg F, Fallick AE (2008) Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology 8:87–117Google Scholar
  34. International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. III, McGraw-Hill, New York, 1928Google Scholar
  35. Juchem PL (1999) Mineralogia, geologia e gênese dos depósitos de Ametista da região do Alto Uruguai, Rio Grande do Sul. PhD thesis, Universidade de São Paulo, BrazilGoogle Scholar
  36. Juchem PL, Hartmann LA, Massonne HJ, Theye T (2009) Oxygen isotope composition of amethyst and related silica minerals in volcanic rocks from the Paraná province, southern Brazil. Congr Bras Geochímica, Ouro Preto, p 6Google Scholar
  37. Kimmelmann e Silva AA, Rebouças AC, Santiago MMF (1989) 14C analyses of groundwater from the Botucatu aquifer system in Brazil. Radiocarbon 31:926–933Google Scholar
  38. Kimmelmann AA, Forster M, Coelho R (1995) Environmental isotope and hydrogeochemical investigation of Bauru and Botucatu aquifers, Paraná Basin, Brazil. In: Isotope Hydrology Investigations in Latin America, IAEA, Vienna, IAEA-TECDOC-835, pp. 57–74Google Scholar
  39. Krüger Y, Stoller P, Rička J, Frenz M (2007) Femtosecond lasers in fluid inclusion analysis: overcoming metastable phase states. European J Mineral 19:693–706CrossRefGoogle Scholar
  40. Lieber W (1985) Pseudomorphose von Quarz nach Anhydrit. Der Aufschluss 36:143–144Google Scholar
  41. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochem 10:373–389CrossRefGoogle Scholar
  42. Mao S, Duan Z (2008) The P, V, T, x properties of binary aqueous chloride solutions up to T = 573 K and 100 MPa. J Chem Thermodynamics 40:1046–1063CrossRefGoogle Scholar
  43. Mariani P, Braitenberg C, Ussami N (2013) Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations. J South American Earth Sci 45:209–223CrossRefGoogle Scholar
  44. Marti D, Krüger Y, Frenz M (2009) Fluid inclusion liquid-vapour homogenization in the vicinity of the density maximum of aqueous solutions. ECROFI XX AbstractGoogle Scholar
  45. Marti D, Krüger Y, Frenz M, Rička J (2012) The effect of surface tension on liquid–gas equilibria in isochoric systems and its application to fluid inclusions. Fluid Phase Equilibria 314:13–21CrossRefGoogle Scholar
  46. Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Oxygen isotope fractionations in the system quartz-anorthite-water. Geochim Cosmochim Acta 42:1131–1140Google Scholar
  47. Matsui E, Salati E, Marini OJ (1974) D/H and 18O/16O ratios in waters contained in geodes from the Basaltic Province of Rio Grande do Sul, Brazil. Geol Soc Am Bull 85:577–580CrossRefGoogle Scholar
  48. McKinley JP, Stevens TO, Westall F (2000) Microfossils and paleoenvironments in deep subsurface basalt samples. Geomicrobiology 17:43–54CrossRefGoogle Scholar
  49. McMillan K, Cross RW, Long PE (1987) Two-stage vesiculation in the Cohassett flow of the Grande Ronde Basalt, south-central Washington. Geology 15:809–812CrossRefGoogle Scholar
  50. Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paolo state, Brazil. J Hydrol 250:78–97CrossRefGoogle Scholar
  51. Meunier A, Formoso MLL, Patrier P, Chies JO (1988) Altération hydrothermale de roches volcaniques liée à la genèse des améthystes - Bassin du Paraná - sud do Brésil. Geochim Brasiliensis 2:127–142Google Scholar
  52. Montaño J, Tujchneider O, Auge M, Fili M, Paris M, D’Elía M, Pérez M, Nagy MI, Collazo P, Decoud P (1998) Acuíferos Regionales en América Latina. Sistema Acuífero Guaraní. Capítulo argentino-uruguayo. Centro de Publicationes Universidad Nacional del Litoral, Santa Fe, Argentina, p 216Google Scholar
  53. Morteani G, Kostitsyn Y, Preinfalk C, Gilg HA (2010) The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study. Intern J Geol Sci 99:927–947Google Scholar
  54. Moxon T, Petrone CM, Reed SJB (2013) Characterization and genesis of horizontal banding in Brazilian agate: an X-ray diffraction, thermogravimetric and electron microprobe study. Miner Mag 77:227–248CrossRefGoogle Scholar
  55. Müller A (2000) Cathodoluminescence and characterization of defect structures in quartz with applications to the study of granitic rocks. PhD thesis, University of Göttingen, pp. 1-222Google Scholar
  56. Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1995) Kathodolumineszenz: Methodik und Anwendung. Zbl Geol Paläont Teil I, H 1/2:287–306Google Scholar
  57. O’Neil JR, Epstein S (1966) A method for oxygen isotope analysis of milligram quantities of water and some of its applications. J Geophys Res 71:4955–4961CrossRefGoogle Scholar
  58. Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. John Wiley & Sons, New York, pp 517–611Google Scholar
  59. Pesce A (2002) Thermal spas: an economic development alternative along both sides of the Uruguay river. GHC Quart Bull Geo, Heat Center Campus Drive, September 2002, pp 22–28Google Scholar
  60. Pinto VM, Hartmann LA, Santos JOS, McNaughton NJ, Wildner W (2011) Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at ~135 Ma. Chem Geol 281:93–102CrossRefGoogle Scholar
  61. Pöllmann H (2010) Kugelfluorit auf Amethyst aus Rio Grande do Sul/Brasilien. Der Aufschluss 61:321–323Google Scholar
  62. Proust D, Fontaine C (2007a) Amethyst-bearing lava flows in the Paraná Basin (Rio Grande do Sul, Brazil): cooling, vesiculation and formation of the geodic cavities. Geol Mag 144:53–65CrossRefGoogle Scholar
  63. Proust D, Fontaine C (2007b) Amethyst geodes in the basaltic flow from Triz quarry at Ametista do Sul (Rio Grande do Sul, Brazil): magmatic source of silica for the amethyst crystallizations. Geol Mag 144:731–740CrossRefGoogle Scholar
  64. Rosenstengel LM, Hartmann LA (2012) Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil. Ore Geol Rev 48:332–348CrossRefGoogle Scholar
  65. Rossman GR (1994) Colored varieties of the silica minerals. Rev Mineral 29:433–467Google Scholar
  66. Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357CrossRefGoogle Scholar
  67. Sharp ZD, Kirschner DL (1994) Quartz-calcite oxygen isotope thermometry; a calibration based on natural isotopic variations. Geochim Cosmochim Acta 58:4491–4501CrossRefGoogle Scholar
  68. Silva RBG (1983) Hydrogeochemical and isotopic study of groundwater of the Botucatu Aquifer, in São Paulo state (in Portuguese). PhD thesis, University of São Paulo, BrazilGoogle Scholar
  69. Sracek O, Hirata R (2002) Geochemical and stable isotopic evolution of the Guaraní acquifer system in the State of São Paulo, Brazil. Hydrogeol J 10:643–655CrossRefGoogle Scholar
  70. Stevens TO, McKinley JP (1995) Lithoautotrophic microbia, ecosystems in deep basalt aquifers. Science 270:450–454CrossRefGoogle Scholar
  71. Stevens TO, McKinley JP, Fredrickson JK (1993) Bacteria associated with deep, alkaline, anaerobic groundwaters in southeast Washington. Microb Ecol 25:35–50CrossRefGoogle Scholar
  72. Stewart K, Turner S, Kelley S, Hawkesworth CJ, Kirstein L, Mantovani M (1996) 3-D, 40Ar-39Ar geochronology in the Paraná continental flood basalt province. Earth Planet Sci Lett 143:95–109CrossRefGoogle Scholar
  73. Thiede DS, Vasconcelos PM (2010) Paraná flood basalts: rapid extrusion hypothesis confirmed by new 40Ar/39Ar results. Geology 38:747–750CrossRefGoogle Scholar
  74. Thordarson T, Self S (1998) The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103:27,411–27,445CrossRefGoogle Scholar
  75. Thordarson T, Sigmarsson O (2009) Effusive activity in the 1963–1967 Surtsey eruption, Iceland: flow emplacement and growth of small lava shields. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker. Special Publications of IAVCEI 2, Geological Society, London, pp 53–84Google Scholar
  76. Turner S, Relegous M, Hawkesworth CJ, Mantovani M (1994) Magmatism and continental break-up in the South Atlantic: high precision 40Ar-39Ar geochronology. Earth Planet Sci Lett 121:333–348CrossRefGoogle Scholar
  77. Vasconcelos PM (1998) 40Ar/39Ar dating of celadonite and the formation of amethyst geodes in the Paraná Continental Flood Basalt Province. AGU 1998 fall meeting, San Francisco, F933 (abs)Google Scholar
  78. Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535CrossRefGoogle Scholar
  79. Wright R (1919) The effect of some simple electrolytes on the temperature of maximum density of water. J Chem Soc 115:119–126CrossRefGoogle Scholar
  80. Zalan PV, Wolf S, Astolfi MAM, Vieira IS, Conceição JC, Appi VT, Santos Neto EV, Cerqueira JR, Marques A (1991) The Paraná Basin, Brazil. In: Leighton MW, Kolata DR, Oltz DF, Eidel JJ (eds) Interior cratonic basins. AAPG Memoir 51, pp. 681–708Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • H. Albert Gilg
    • 1
  • Yves Krüger
    • 2
  • Heinrich Taubald
    • 3
  • Alfons M. van den Kerkhof
    • 4
  • Martin Frenz
    • 2
  • Giulio Morteani
    • 5
  1. 1.Lehrstuhl für Ingenieurgeologie, TUMMunichGermany
  2. 2.Institut für Angewandte PhysikUniversität BernBernSwitzerland
  3. 3.Lehrstuhl für IsotopengeochemieUniversität TübingenTübingenGermany
  4. 4.Angewandt GeologieUniversität GöttingenGöttingenGermany
  5. 5.Hydroisotop GmbHSchweitenkirchenGermany

Personalised recommendations